Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ethan G. Hughes is active.

Publication


Featured researches published by Ethan G. Hughes.


Lancet Neurology | 2010

Antibodies to the GABAB receptor in limbic encephalitis with seizures: case series and characterisation of the antigen

Eric Lancaster; Meizan Lai; Xiaoyu Peng; Ethan G. Hughes; Radu Constantinescu; Jeff rey Raizer; Daniel Friedman; Mark Skeen; Wolfgang Grisold; Akio Kimura; Kouichi Ohta; Takahiro Iizuka; Miguel Guzman; Francesc Graus; Stephen J. Moss; Rita J. Balice-Gordon; Josep Dalmau

BACKGROUND Some encephalitides or seizure disorders once thought idiopathic now seem to be immune mediated. We aimed to describe the clinical features of one such disorder and to identify the autoantigen involved. METHODS 15 patients who were suspected to have paraneoplastic or immune-mediated limbic encephalitis were clinically assessed. Confocal microscopy, immunoprecipitation, and mass spectrometry were used to characterise the autoantigen. An assay of HEK293 cells transfected with rodent GABA(B1) or GABA(B2) receptor subunits was used as a serological test. 91 patients with encephalitis suspected to be paraneoplastic or immune mediated and 13 individuals with syndromes associated with antibodies to glutamic acid decarboxylase 65 were used as controls. FINDINGS All patients presented with early or prominent seizures; other symptoms, MRI, and electroencephalography findings were consistent with predominant limbic dysfunction. All patients had antibodies (mainly IgG1) against a neuronal cell-surface antigen; in three patients antibodies were detected only in CSF. Immunoprecipitation and mass spectrometry showed that the antibodies recognise the B1 subunit of the GABA(B) receptor, an inhibitory receptor that has been associated with seizures and memory dysfunction when disrupted. Confocal microscopy showed colocalisation of the antibody with GABA(B) receptors. Seven of 15 patients had tumours, five of which were small-cell lung cancer, and seven patients had non-neuronal autoantibodies. Although nine of ten patients who received immunotherapy and cancer treatment (when a tumour was found) showed neurological improvement, none of the four patients who were not similarly treated improved (p=0.005). Low levels of GABA(B1) receptor antibodies were identified in two of 104 controls (p<0.0001). INTERPRETATION GABA(B) receptor autoimmune encephalitis is a potentially treatable disorder characterised by seizures and, in some patients, associated with small-cell lung cancer and with other autoantibodies. FUNDING National Institutes of Health.


The Journal of Neuroscience | 2006

Intracellular and Trans-Synaptic Regulation of Glutamatergic Synaptogenesis by EphB Receptors

Matthew S. Kayser; Andrew C. McClelland; Ethan G. Hughes; Matthew B. Dalva

The majority of mature excitatory synapses in the CNS are found on dendritic spines and contain AMPA- and NMDA-type glutamate receptors apposed to presynaptic specializations. EphB receptor tyrosine kinase signaling has been implicated in both NMDA-type glutamate receptor clustering and dendritic spine formation, but it remains unclear whether EphB plays a broader role in presynaptic and postsynaptic development. Here, we find that EphB2 is involved in organizing excitatory synapses through the independent activities of particular EphB2 protein domains. We demonstrate that EphB2 controls AMPA-type glutamate receptor localization through PDZ (postsynaptic density-95/Discs large/zona occludens-1) binding domain interactions and triggers presynaptic differentiation via its ephrin binding domain. Knockdown of EphB2 in dissociated neurons results in decreased functional synaptic inputs, spines, and presynaptic specializations. Mice lacking EphB1–EphB3 have reduced numbers of synapses, and defects are rescued with postnatal reexpression of EphB2 in single neurons in brain slice. These results demonstrate that EphB2 acts to control the organization of specific classes of mature glutamatergic synapses.


The Journal of Neuroscience | 2005

Astrocytes Regulate Inhibitory Synapse Formation via Trk-Mediated Modulation of Postsynaptic GABAA Receptors

Sarina B. Elmariah; Eun Joo Oh; Ethan G. Hughes; Rita J. Balice-Gordon

Astrocytes promote the formation and function of excitatory synapses in the CNS. However, whether and how astrocytes modulate inhibitory synaptogenesis are essentially unknown. We asked whether astrocytes regulate the formation of inhibitory synapses between hippocampal neurons during maturation in vitro. Neuronal coculture with astrocytes or treatment with astrocyte-conditioned medium (ACM) increased the number of inhibitory presynaptic terminals, the frequency of miniature IPSCs, and the number and synaptic localization of GABAA receptor (GABAAR) clusters during the first 10 d in vitro. We asked whether neurotrophins, which are potent modulators of inhibitory synaptic structure and function, mediate the effects of astrocytes on inhibitory synapses. ACM from BDNF- or tyrosine receptor kinase B (TrkB)-deficient astrocytes increased inhibitory presynaptic terminals and postsynaptic GABAAR clusters in wild-type neurons, suggesting that BDNF and TrkB expression in astrocytes is not required for these effects. In contrast, although the increase in the number of inhibitory presynaptic terminals persisted, no increase was observed in postsynaptic GABAAR clusters after ACM treatment of hippocampal neurons lacking BDNF or TrkB. These results suggest that neurons, not astrocytes, are the relevant source of BDNF and are the site of TrkB activation required for postsynaptic GABAAR modulation. These data also suggest that astrocytes may modulate postsynaptic development indirectly by stimulating Trk signaling between neurons. Together, these data show that astrocytes modulate inhibitory synapse formation via distinct presynaptic and postsynaptic mechanisms.


Molecular and Cellular Neuroscience | 2010

Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis

Ethan G. Hughes; Sarina B. Elmariah; Rita J. Balice-Gordon

Astrocytes modulate the formation and function of glutamatergic synapses in the CNS, but whether astrocytes modulate GABAergic synaptogenesis is unknown. We demonstrate that media conditioned by astrocytes, but not other cells, enhanced GABAergic but not glutamatergic axon length and branching, and increased the number and density of presynaptically active GABAergic synapses in dissociated hippocampal cultures. Candidate mechanisms and factors, such as activity, neurotrophins, and cholesterol were excluded as mediating these effects. While thrombospondins secreted by astrocytes are necessary and sufficient to increase hippocampal glutamatergic synaptogenesis, they do not mediate astrocyte effects on GABAergic synaptogenesis. We show that the factors in astrocyte conditioned media that selectively affect GABAergic neurons are proteins. Taken together, our results show that astrocytes increase glutamatergic and GABAergic synaptogenesis via different mechanisms and release one or more proteins with the novel functions of increasing GABAergic axon length, branching and synaptogenesis.


European Journal of Neuroscience | 2010

Mechanisms underlying autoimmune synaptic encephalitis leading to disorders of memory, behavior and cognition: insights from molecular, cellular and synaptic studies

Emilia H. Moscato; Ankit Jain; Xiaoyu Peng; Ethan G. Hughes; Josep Dalmau; Rita J. Balice-Gordon

Recently, several novel, potentially lethal and treatment‐responsive syndromes that affect hippocampal and cortical function have been shown to be associated with auto‐antibodies against synaptic antigens, notably glutamate or GABA‐B receptors. Patients with these auto‐antibodies, sometimes associated with teratomas and other neoplasms, present with psychiatric symptoms, seizures, memory deficits and decreased levels of consciousness. These symptoms often improve dramatically after immunotherapy or tumor resection. Here we review studies of the cellular and synaptic effects of these antibodies in hippocampal neurons in vitro and preliminary work in rodent models. Our work suggests that patient antibodies lead to rapid and reversible removal of neurotransmitter receptors from synaptic sites, leading to changes in synaptic and circuit function that in turn are likely to lead to behavioral deficits. We also discuss several of the many questions raised by these and related disorders. Determining the mechanisms underlying these novel anti‐neurotransmitter receptor encephalopathies will provide insights into the cellular and synaptic bases of the memory and cognitive deficits that are hallmarks of these disorders, and potentially suggest avenues for therapeutic intervention.


Neuron Glia Biology | 2005

Neurotrophin signaling among neurons and glia during formation of tripartite synapses

Sarina B. Elmariah; Ethan G. Hughes; Eun Joo Oh; Rita J. Balice-Gordon

Synapse formation in the CNS is a complex process that involves the dynamic interplay of numerous signals exchanged between pre- and postsynaptic neurons as well as perisynaptic glia. Members of the neurotrophin family, which are widely expressed in the developing and mature CNS and are well-known for their roles in promoting neuronal survival and differentiation, have emerged as key synaptic modulators. However, the mechanisms by which neurotrophins modulate synapse formation and function are poorly understood. Here, we summarize our work on the role of neurotrophins in synaptogenesis in the CNS, in particular the role of these signaling molecules and their receptors, the Trks, in the development of excitatory and inhibitory hippocampal synapses. We discuss our results that demonstrate that postsynaptic TrkB signaling plays an important role in modulating the formation and maintenance of NMDA and GABAA receptor clusters at central synapses, and suggest that neurotrophin signaling coordinately modulates these receptors as part of mechanism that promotes the balance between excitation and inhibition in developing circuits. We also discuss our results that demonstrate that astrocytes promote the formation of GABAergic synapses in vitro by differentially regulating the development of inhibitory presynaptic terminals and postsynaptic GABAA receptor clusters, and suggest that glial modulation of inhibitory synaptogenesis is mediated by neurotrophin-dependent and -independent signaling. Together, these findings extend our understanding of how neuron-glia communication modulates synapse formation, maintenance and function, and set the stage for defining the cellular and molecular mechanisms by which neurotrophins and other cell-cell signals direct synaptogenesis in the developing brain.


Proteomics | 2009

Mass spectrometric and computational analysis of cytokine-induced alterations in the astrocyte secretome

Sarah Dunn Keene; Todd M. Greco; Ioannis Parastatidis; Seon Hwa Lee; Ethan G. Hughes; Rita J. Balice-Gordon; David W. Speicher; Harry Ischiropoulos

The roles of astrocytes in the CNS have been expanding beyond the long held view of providing passive, supportive functions. Recent evidence has identified roles in neuronal development, extracellular matrix maintenance, and response to inflammatory challenges. Therefore, insights into astrocyte secretion are critically important for understanding physiological responses and pathological mechanisms in CNS diseases. Primary astrocyte cultures were treated with inflammatory cytokines for either a short (1 day) or sustained (7 days) exposure. Increased interleukin‐6 secretion, nitric oxide production, cyclooxygenase‐2 activation, and nerve growth factor (NGF) secretion confirmed the astrocytic response to cytokine treatment. MS/MS analysis, computational prediction algorithms, and functional classification were used to compare the astrocyte protein secretome from control and cytokine‐exposed cultures. In total, 169 secreted proteins were identified, including both classically and nonconventionally secreted proteins that comprised components of the extracellular matrix and enzymes involved in processing of glycoproteins and glycosaminoglycans. Twelve proteins were detected exclusively in the secretome from cytokine‐treated astrocytes, including matrix metalloproteinase‐3 (MMP‐3) and members of the chemokine ligand family. This compilation of secreted proteins provides a framework for identifying factors that influence the biochemical environment of the nervous system, regulate development, construct extracellular matrices, and coordinate the nervous system response to inflammation.


Annals of Neurology | 2015

Cellular Plasticity Induced by Anti–α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Receptor Encephalitis Antibodies

Xiaoyu Peng; Ethan G. Hughes; Emilia H. Moscato; Thomas D. Parsons; Josep Dalmau; Rita J. Balice-Gordon

Autoimmune‐mediated anti–α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) encephalitis is a severe but treatment‐responsive disorder with prominent short‐term memory loss and seizures. The mechanisms by which patient antibodies affect synapses and neurons leading to symptoms are poorly understood.


Current Opinion in Neurobiology | 2016

The cell biology of CNS myelination.

Ethan G. Hughes; Bruce Appel

Myelination of axons in the central nervous system results from the remarkable ability of oligodendrocytes to wrap multiple axons with highly specialized membrane. Because myelin membrane grows as it ensheaths axons, cytoskeletal rearrangements that enable ensheathment must be coordinated with myelin production. Because the myelin sheaths of a single oligodendrocyte can differ in thickness and length, mechanisms that coordinate axon ensheathment with myelin growth likely operate within individual oligodendrocyte processes. Recent studies have revealed new information about how assembly and disassembly of actin filaments helps drive the leading edge of nascent myelin membrane around and along axons. Concurrently, other investigations have begun to uncover evidence of communication between axons and oligodendrocytes that can regulate myelin formation.


Nature Neuroscience | 2018

Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex

Ethan G. Hughes; Jennifer L. Orthmann-Murphy; Abraham J. Langseth; Dwight E. Bergles

Oligodendrocyte generation in the adult CNS provides a means to adapt the properties of circuits to changes in life experience. However, little is known about the dynamics of oligodendrocytes and the extent of myelin remodeling in the mature brain. Using longitudinal in vivo two-photon imaging of oligodendrocytes and their progenitors in the mouse cerebral cortex, we show that myelination is an inefficient and extended process, with half of the final complement of oligodendrocytes generated after 4 months of age. Oligodendrocytes that successfully integrated formed new sheaths on unmyelinated and sparsely myelinated axons, and they were extremely stable, gradually changing the pattern of myelination. Sensory enrichment robustly increased oligodendrocyte integration, but did not change the length of existing sheaths. This experience-dependent enhancement of myelination in the mature cortex may accelerate information transfer in these circuits and strengthen the ability of axons to sustain activity by providing additional metabolic support.Oligodendrocytes are generated in adult somatosensory cortex, but few successfully integrate to form myelin. Sensory enrichment alters myelination patterns by enhancing oligodendrogenesis rather than altering the length of existing myelin sheaths.

Collaboration


Dive into the Ethan G. Hughes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyu Peng

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Josep Dalmau

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Dwight E. Bergles

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Meizan Lai

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amy J. Gleichman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Baris N. Ozbay

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

David R. Lynch

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily A. Gibson

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge