Ethan Gerhard
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ethan Gerhard.
Acta Biomaterialia | 2016
Jianqing Hu; Jinshan Guo; Zhiwei Xie; Dingying Shan; Ethan Gerhard; Guoying Qian; Jian Yang
UNLABELLED Fluorescent biomaterials have attracted significant research efforts in the past decades. Herein, we report a new series of biodegradable, fluorescence imaging-enabled copolymers, biodegradable photoluminescent poly(lactide-co-glycolide) (BPLP-co-PLGA). Photoluminescence characterization shows that BPLP-co-PLGA solutions, films and nanoparticles all exhibit strong, tunable and stable photoluminescence. By adjusting the molar ratios of L-lactide (LA)/glycolide (GA) and (LA+GA)/BPLP, full degradation of BPLP-co-PLGA can be achieved in 8-16 weeks. The fluorescence decay behavior of BPLP-co-PLGA can be used for non-invasive monitoring of material degradation. In vitro cytotoxicity and in vivo foreign body response evaluations demonstrate that BPLP-co-PLGA exhibits similar biocompatibility to poly(lactide-co-glycolide) (PLGA). The imaging-enabled BPLP-co-PLGA was fabricated into porous scaffolds whose degradation can be monitored through non-invasive imaging and nanoparticles that show theranostic potential demonstrated by fluorescent cellular labeling, imaging and sustained 5-fluorouracil delivery. The development of inherently fluorescent PLGA copolymers is expected to impact the use of already widely accepted PLGA polymers for applications where fluorescent properties are highly desired but limited by the conventional use of cytotoxic quantum dots and photobleaching organic dyes. STATEMENT OF SIGNIFICANCE This manuscript describes a novel strategy of conferring intrinsic photoluminescence to the widely used biodegradable polymers, poly(lactide-co-glycolide) without introducing any cytotoxic quantum dots or photo-bleaching organic dyes, which may greatly expand the applications of these polymers in where fluorescent properties are highly desired. Given the already significant impact generated by the use of PLGA and alike, this work contributes to fluorescence chemistry and new functional biomaterial design and will potentially generate significant impact on many fields of applications such as tissue engineering, molecular imaging and labeling, and drug delivery.
ACS Applied Materials & Interfaces | 2016
Jianqing Hu; Kaimei Peng; Jinshan Guo; Dingying Shan; Gloria B. Kim; Qiyao Li; Ethan Gerhard; Liang Zhu; Weiping Tu; Weizhong Lv; Michael A. Hickner; Jian Yang
Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Youngs modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives.
Journal of Biomedical Materials Research Part A | 2015
Ying Guo; Richard T. Tran; Yuchen Wang; Dianna Y. Nguyen; Ethan Gerhard; Jinshan Guo; Jiajun Tang; Zhongming Zhang; Xiaochun Bai; Jian Yang
Attempts to replicate native tissue architecture have led to the design of biomimetic scaffolds focused on improving functionality. In this study, biomimetic citrate-based poly (octanediol citrate)-click-hydroxyapatite (POC-Click-HA) scaffolds were developed to simultaneously replicate the compositional and architectural properties of native bone tissue while providing immediate structural support for large segmental defects following implantation. Biphasic scaffolds were fabricated with 70% internal phase porosity and various external phase porosities (between 5 and 50%) to mimic the bimodal distribution of cancellous and cortical bone, respectively. Biphasic POC-Click-HA scaffolds displayed compressive strengths up to 37.45 ± 3.83 MPa, which could be controlled through the external phase porosity. The biphasic scaffolds were also evaluated in vivo for the repair of 10-mm long segmental radial defects in rabbits and compared to scaffolds of uniform porosity as well as autologous bone grafts after 5, 10, and 15 weeks of implantation. The results showed that all POC-Click-HA scaffolds exhibited good biocompatibility and extensive osteointegration with host bone tissue. Biphasic scaffolds significantly enhanced new bone formation with higher bone densities in the initial stages after implantation. Biomechanical and histomorphometric analysis supported a similar outcome with biphasic scaffolds providing increased compression strength, interfacial bone ingrowth, and periosteal remodeling in early time points, but were comparable to all experimental groups after 15 weeks. These results confirm the ability of biphasic scaffold architectures to restore bone tissue and physiological functions in the early stages of recovery, and the potential of citrate-based biomaterials in orthopedic applications.
Bioactive Materials | 2016
Surge Kalaba; Ethan Gerhard; Joshua S. Winder; Eric M. Pauli; Randy S. Haluck; Jian Yang
Hernia repair is one of the most commonly performed surgical procedures worldwide, with a multi-billion dollar global market. Implant design remains a critical challenge for the successful repair and prevention of recurrent hernias, and despite significant progress, there is no ideal mesh for every surgery. This review summarizes the evolution of prostheses design toward successful hernia repair beginning with a description of the anatomy of the disease and the classifications of hernias. Next, the major milestones in implant design are discussed. Commonly encountered complications and strategies to minimize these adverse effects are described, followed by a thorough description of the implant characteristics necessary for successful repair. Finally, available implants are categorized and their advantages and limitations are elucidated, including non-absorbable and absorbable (synthetic and biologically derived) prostheses, composite prostheses, and coated prostheses. This review not only summarizes the state of the art in hernia repair, but also suggests future research directions toward improved hernia repair utilizing novel materials and fabrication methods.
International Journal of Nanomedicine | 2017
Jiawei Sun; Lei Jiang; Yi Lin; Ethan Gerhard; Xuehua Jiang; Li Li; Jian Yang; Zhongwei Gu
Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Here, multistage tumor-targeting liposomes containing two targeted peptide-modified lipids, cRGD-PEG2000-DSPE and KLA-PEG2000-DSPE, were developed for encapsulation of the anticancer drug paclitaxel (PTX, RGD-KLA/PTX-Lips). Compared with Taxol (free PTX), RGD/PTX-Lips and KLA/PTX-Lips, the half-maximal inhibitory concentration (IC50) value of RGD-KLA/PTX-Lips in vitro was 1.9-, 36.7- and 22.7-fold lower with 4T1 cells, respectively, because of higher levels of cellular uptake. Similar results were also observed with human umbilical vascular endothelial cells (HUVECs). An apoptosis assay showed that the total apoptotic ratio of RGD-KLA/PTX-Lips was the highest because of the mitochondria-targeted drug delivery and the activation of mitochondrial apoptosis pathways, as evidenced by visible mitochondrial localization, decreased mitochondrial membrane potential, release of cytochrome c and increased activities of caspase-9 and caspase-3. The strongest tumor growth inhibition (TGI; 80.6%) and antiangiogenesis effects without systemic toxicity were also observed in RGD-KLA/PTX-Lip-treated 4T1 tumor xenograft BALB/c mice. In conclusion, these multistage tumor-targeting liposomes represent a promising anticancer drug delivery system (DDS) capable of maximizing anticancer therapeutic efficacy and minimizing systemic toxicity.
Acta Biomaterialia | 2017
Ethan Gerhard; Wei Wang; Caiyan Li; Jinshan Guo; Ibrahim T. Ozbolat; Kevin Michael Rahn; April D. Armstrong; Jingfen Xia; Guoying Qian; Jian Yang
The field of tissue engineering and regenerative medicine relies heavily on materials capable of implantation without significant foreign body reactions and with the ability to promote tissue differentiation and regeneration. The field of bone tissue engineering in particular requires materials capable of providing enhanced mechanical properties and promoting osteogenic cell lineage commitment. While bone repair has long relied almost exclusively on inorganic, calcium phosphate ceramics such as hydroxyapatite and their composites or on non-degradable metals, the organically derived shell and pearl nacre generated by mollusks has emerged as a promising alternative. Nacre is a naturally occurring composite material composed of inorganic, calcium carbonate plates connected by a framework of organic molecules. Similar to mammalian bone, the highly organized microstructure of nacre endows the composite with superior mechanical properties while the organic phase contributes to significant bioactivity. Studies, both in vitro and in vivo, have demonstrated nacres biocompatibility, biodegradability, and osteogenic potential, which are superior to pure inorganic minerals such as hydroxyapatite or non-degradable metals. Nacre can be used directly as a bulk implant or as part of a composite material when combined with polymers or other ceramics. While nacre has demonstrated its effectiveness in multiple cell culture and animal models, it remains a relatively underexplored biomaterial. This review introduces the formation, structure, and characteristics of nacre, and discusses the present and future uses of this biologically-derived material as a novel biomaterial for orthopedic and other tissue engineering applications. STATEMENT OF SIGNIFICANCE Mussel derived nacre, a biological composite composed of mineralized calcium carbonate platelets and interplatelet protein components, has recently gained interest as a potential alternative ceramic material in orthopedic biomaterials, combining the integration and mechanical capabilities of calcium phosphates with increased bioactivity derived from proteins and biomolecules; however, there is limited awareness of this materials potential. Herein, we present, to our knowledge, the first comprehensive review of nacre as a biomaterial. Nacre is a highly promising yet overlooked biomaterial for orthopedic tissue engineering with great potential in a wide variety of material systems. It is our hope that publication of this article will lead to increased community awareness of the potential of nacre as a versatile, bioactive ceramic capable of improving bone tissue regeneration and will elicit increased research effort and innovation utilizing nacre.
Bioactive Materials | 2018
Chuying Ma; Ethan Gerhard; Qiaoling Lin; Silun Xia; April D. Armstrong; Jian Yang
Citrate based polymer poly(octamethylene citrate) (POC) has shown promise when formulated into composite material containing up to 65 wt% hydroxylapatite (HA) for orthopedic applications. Despite significant research into POC, insufficient information about the biocompatibility of the monomers 1,8-Octanediol and Citrate used in its synthesis is available. Herein, we investigated the acute cytotoxicity, immune response, and long-term functionality of both monomers. Our results showed a cell-type dependent cytotoxicity of the two monomers: 1,8-Octanediol induced less acute toxicity to 3T3 fibroblasts than Citrate while presenting comparable cytotoxicity to MG63 osteoblast-like cells; however, Citrate demonstrated enhanced compatibility with hMSCs compared to 1,8-Octanediol. The critical cytotoxic concentration values EC30 and EC50, standard for comparing cytotoxicity of chemicals, were also provided. Additionally, Citrate showed slower and less inhibitory effects on long-term hMSC cell proliferation compared with 1,8-Octanediol. Furthermore, osteogenic differentiation of hMSCs exposure to Citrate resulted in less inhibitory effect on alkaline phosphatase (ALP) production. Neither monomer triggered undesired pro-inflammatory responses. In combination with diffusion model analysis of monomer release from cylindrical implants, based on which the maximum concentration of monomers in contact with bone tissue was estimated to be 2.2 × 10−4 mmol/L, far lower than the critical cytotoxic concentrations as well as the 1,8-Octanediol concentration (0.4 mg/mL or 2.7 mmol/L) affecting hMSCs differentiation, we provide strong evidence for the cytocompatibility of the two monomers degraded from citrate-based composites in the orthopedic setting.
Bioactive Materials | 2018
Dingying Shan; Ethan Gerhard; Chenji Zhang; John William Tierney; Daniel Xie; Zhiwen Liu; Jian Yang
With the growing importance of optical techniques in medical diagnosis and treatment, there exists a pressing need to develop and optimize materials platform for biophotonic applications. Particularly, the design of biocompatible and biodegradable materials with desired optical, mechanical, chemical, and biological properties is required to enable clinically relevant biophotonic devices for translating in vitro optical techniques into in situ and in vivo use. This technological trend propels the development of natural and synthetic polymeric biomaterials to replace traditional brittle, nondegradable silica glass based optical materials. In this review, we present an overview of the advances in polymeric optical material development, optical device design and fabrication techniques, and the accompanying applications to imaging, sensing and phototherapy.
Biomaterials | 2016
Jinshan Guo; Wei Wang; Jianqing Hu; Ethan Gerhard; Merisa Nisic; Dingying Shan; Guoying Qian; Siyang Zheng; Jian Yang
Biomaterials | 2017
Juan Li; Yuchen Tian; Dingying Shan; An Gong; Leyong Zeng; Wenzhi Ren; Lingchao Xiang; Ethan Gerhard; Jinshun Zhao; Jian Yang; Aiguo Wu