Etienne De Montigny
École Polytechnique de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Etienne De Montigny.
Optics Letters | 2013
Wendy-Julie Madore; Etienne De Montigny; Olivier Ouellette; Simon Lemire-Renaud; Mikael Leduc; Xavier Daxhelet; Nicolas Godbout; Caroline Boudoux
We present an asymmetric double-clad fiber coupler (A-DCFC) exploiting a disparity in fiber etendues to exceed the equipartition limit (≤50% extraction of inner cladding multi-mode light). The A-DCFC is fabricated using two commercially available fibers and a custom fusion-tapering setup to achieve >70% extraction of multi-mode inner cladding light without affecting (>95% transmission) single-mode light propagation in the core. Imaging with the A-DCFC is demonstrated in a spectrally encoded imaging setup using a weakly backscattering biological sample. Other applications include the combination of optical coherence tomography with weak fluorescent or Raman scattering signals.
Optics Express | 2015
Etienne De Montigny; Wendy-Julie Madore; Olivier Ouellette; Gabriel Bernard; Mikael Leduc; Mathias Strupler; Caroline Boudoux; Nicolas Godbout
Double-clad fibers (DCF) have many advantages in fibered confocal microscopes as they allow for coherent illumination through their core and partially coherent detection through their inner cladding. We report a double-clad fiber coupler (DCFC) made from small inner cladding DCF that preserves optical sectioning in confocal microscopy while increasing collection efficiency and reducing coherent effects. Due to the small inner cladding, previously demonstrated fabrication methods could not be translated to this couplers fabrication. To make such a coupler possible, we introduce in this article three new design concepts. The resulting DCFC fabricated using two custom fibers and a modified fusion-tapering technique achieves high multimodal extraction (≥70 %) and high single mode transmission (≥80 %). Its application to reflectance confocal microscopy showed a 30-fold increase in detected signal intensity, a 4-fold speckle contrast reduction with a penalty in axial resolution of a factor 2. This coupler paves the way towards more efficient confocal microscopes for clinical applications.
Optics Letters | 2010
Mathias Strupler; Etienne De Montigny; Dominic Morneau; Caroline Boudoux
We present rapid imaging of fluorescent samples using spectral encoding (SE). A near-IR wavelength-swept source in used to preserve the SE of the position, despite Stokes shifts. To validate this approach, we imaged fluorescent PbS quantum dot solutions at concentrations down to 0.5+/-0.1micromol/L. This simple configuration allowed acquisition rates of up to 9920 lines of 1024 pixels per second to create high-resolution images. This spectrally encoded setup could be easily miniaturized for endoscopy, thus combining high-resolution fluorescence with confocal reflectance imaging at unmatched acquisition speed.
Optics Letters | 2013
Mohamad Diaa Baiad; Mathieu Gagné; Wendy-Julie Madore; Etienne De Montigny; Nicolas Godbout; Caroline Boudoux; Raman Kashyap
We present a novel optical fiber surface plasmon resonance (SPR) sensor scheme using reflected guided cladding modes captured by a double-clad fiber coupler and excited in a gold-coated fiber with a tilted Bragg grating. This new interrogation approach, based on the reflection spectrum, provides an improvement in the operating range of the device over previous techniques. The device allows detection of SPR in the reflected guided cladding modes and also in the transmitted spectrum, allowing comparison with standard techniques. The sensor has a large operating range from 1.335 to 1.432 RIU, and a sensitivity of 510.5 nm/RIU. The device shows strong dependence on the polarization state of the guided core mode which can be used to turn the SPR on or off.
Optics Express | 2013
Mohamad Diaa Baiad; Mathieu Gagné; Simon Lemire-Renaud; Etienne De Montigny; Wendy-Julie Madore; Nicolas Godbout; Caroline Boudoux; Raman Kashyap
We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.
Journal of medical imaging | 2017
Catherine St. Pierre; Wendy-Julie Madore; Etienne De Montigny; Dominique Trudel; Caroline Boudoux; Nicolas Godbout; Anne-Marie Mes-Masson; Kurosh Rahimi; Frederic Leblond
Abstract. Optical coherence tomography (OCT) yields microscopic volumetric images representing tissue structures based on the contrast provided by elastic light scattering. Multipatient studies using OCT for detection of tissue abnormalities can lead to large datasets making quantitative and unbiased assessment of classification algorithms performance difficult without the availability of automated analytical schemes. We present a mathematical descriptor reducing the dimensionality of a classifier’s input data, while preserving essential volumetric features from reconstructed three-dimensional optical volumes. This descriptor is used as the input of classification algorithms allowing a detailed exploration of the features space leading to optimal and reliable classification models based on support vector machine techniques. Using imaging dataset of paraffin-embedded tissue samples from 38 ovarian cancer patients, we report accuracies for cancer detection >90% for binary classification between healthy fallopian tube and ovarian samples containing cancer cells. Furthermore, multiples classes of statistical models are presented demonstrating >70% accuracy for the detection of high-grade serous, endometroid, and clear cells cancers. The classification approach reduces the computational complexity and needed resources to achieve highly accurate classification, making it possible to contemplate other applications, including intraoperative surgical guidance, as well as other depth sectioning techniques for fresh tissue imaging.
Proceedings of SPIE | 2016
Wendy-Julie Madore; Etienne De Montigny; Andréanne Deschênes; Fouzi Benboujja; Mikael Leduc; Anne-Marie Mes-Masson; Diane Provencher; Kurosh Rahimi; Caroline Boudoux; Nicolas Godbout
Pathological evaluation of the fallopian tubes is an important diagnostic result but tumors can be missed using routine approaches. As the majority of high-grade serous ovarian cancers are now believed to originate in the fallopian tubes, pathological examination should include in a thorough examination of the excised ovaries and fallopian tubes. We present an dedicated imaging system for diagnostic exploration of human fallopian tubes. This system is based on optical coherence tomography (OCT), a laser imaging modality giving access to sub- epithelial tissue architecture. This system produces cross-sectional images up to 3 mm in depth, with a lateral resolution of ≈15μm and an axial resolution of ≈12μm. An endoscopic single fiber probe was developed to fit in a human fallopian tube. This 1.2 mm probe produces 3D volume data of the entire inner tube within a few minutes. To demonstrate the clinical potential of OCT for lesion identification, we studied 5 different ovarian lesions and healthy fallopian tubes. We imaged 52 paraffin-embedded human surgical specimens with a benchtop system and compared these images with histology slides. We also imaged and compared healthy oviducts from 3 animal models to find one resembling the human anatomy and to develop a functional ex vivo imaging procedure with the endoscopic probe. We also present an update on an ongoing clinical pilot study on women undergoing prophylactic or diagnostic surgery in which we image ex vivo fallopian tubes with the endoscopic probe.
Proceedings of SPIE | 2017
Romain Deterre; Routzbeh Khatibi; Etienne De Montigny; Muneeb Khalid
Optical coherence tomography (OCT) imaging systems can now produce MB=s to GB=s data streams. We present a complete solution for signal acquisition up to 4 GS/s and on-board field programmable gate array (FPGA) OCT processing matching the high acquisition speed. On-board OCT signal processing virtually eliminates the downstream signal processing and data throughput bottleneck. Complex filtering allows for windowing and dispersion compensation. Data is zero-padded when the number of samples is not a power of 2. The Fast Fourier Transform (FFT) engine can match the maximum acquisition speed when performing 4096-point FFTs. Output data can be linear amplitude or logarithmic and represented on several floating-point or integer precisions. This hardware solution comes with dedicated software and software development kit.
Journal of Biomedical Optics | 2017
Wendy-Julie Madore; Etienne De Montigny; Andréanne Deschênes; Fouzi Benboujja; Mikael Leduc; Anne-Marie Mes-Masson; Diane Provencher; Kurosh Rahimi; Caroline Boudoux; Nicolas Godbout
Abstract. The majority of high-grade serous ovarian cancers is now believed to originate in the fallopian tubes. Therefore, current practices include the pathological examination of excised fallopian tubes. Detection of tumors in the fallopian tubes using current clinical approaches remains difficult but is of critical importance to achieve accurate staging and diagnosis. Here, we present an intraoperative imaging system for the detection of human fallopian tube lesions. The system is based on optical coherence tomography (OCT) to access subepithelial tissue architecture. To demonstrate that OCT could identify lesions, we analyzed 180 OCT volumes taken from five different ovarian lesions and from healthy fallopian tubes, and compared them to standard pathological review. We demonstrated that qualitative features could be matched to pathological conditions. We then determined the feasibility of intraluminal imaging of intact human fallopian tubes by building a dedicated endoscopic single-fiber OCT probe to access the mucosal layer inside freshly excised specimens from five patients undergoing prophylactic surgeries. The probe insertion into the lumen acquired images over the entire length of the tubes without damaging the mucosa, providing the first OCT images of intact human fallopian tubes.
Proceedings of SPIE | 2016
Etienne De Montigny; Nadir Goulamhoussen; Wendy-Julie Madore; Mathias Strupler; Anastasios Maniakas; Tareck Ayad; Caroline Boudoux
While thyroidectomy is considered a safe surgery, dedicated tools facilitating tissue identification during surgery could improve its outcome. The most common complication following surgery is hypocalcaemia, which results from iatrogenic removal or damage to parathyroid glands. This research project aims at developing and validating an instrument based on optical microscopy modalities to identify tissues in real time during surgery. Our approach is based on a combination of reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) to obtain multi-scale morphological contrast images. The orthogonal field of views provide information to navigate through the sample. To allow simultaneous, synchronized video-rate imaging in both modalities, we designed and built a dual-band wavelength-swept laser which scans a 30 nm band centered at 780 nm and a 90 nm band centered at 1310 nm. We built an imaging setup integrating a custom-made objective lens and a double-clad fibre coupler optimized for confocal microscopy. It features high resolutions in RCM (2µm lateral and 20 µm axial) in a 500 µm x 500 µm field-of-view and a larger field-of-view of 2 mm (lateral) x 5 mm (axial) with 20 µm lateral and axial resolutions in OCT. Imaging of ex vivo animal samples is demonstrated on a bench-top system. Tissues that are visually difficult to distinguish from each other intra-operatively such as parathyroid gland, lymph nodes and adipose tissue are imaged to show the potential of this approach in differentiating neck tissues. We will also provide an update on our ongoing clinical pilot study on patients undergoing thyroidectomy.