Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Etienne Decroly is active.

Publication


Featured researches published by Etienne Decroly.


Antiviral Research | 2010

Structure and functionality in flavivirus NS-proteins: perspectives for drug design.

Michela Bollati; Karin Alvarez; René Assenberg; Cécile Baronti; Bruno Canard; Shelley Cook; Bruno Coutard; Etienne Decroly; Xavier de Lamballerie; Ernest A. Gould; Gilda Grard; Jonathan M. Grimes; Rolf Hilgenfeld; Anna M. Jansson; Hélène Malet; Erika J. Mancini; Eloise Mastrangelo; Andrea Mattevi; Mario Milani; Gregory Moureau; Johan Neyts; Raymond J. Owens; Jingshan Ren; Barbara Selisko; Silvia Speroni; Holger Steuber; David I. Stuart; Torsten Unge; Martino Bolognesi

Flaviviridae are small enveloped viruses hosting a positive-sense single-stranded RNA genome. Besides yellow fever virus, a landmark case in the history of virology, members of the Flavivirus genus, such as West Nile virus and dengue virus, are increasingly gaining attention due to their re-emergence and incidence in different areas of the world. Additional environmental and demographic considerations suggest that novel or known flaviviruses will continue to emerge in the future. Nevertheless, up to few years ago flaviviruses were considered low interest candidates for drug design. At the start of the European Union VIZIER Project, in 2004, just two crystal structures of protein domains from the flaviviral replication machinery were known. Such pioneering studies, however, indicated the flaviviral replication complex as a promising target for the development of antiviral compounds. Here we review structural and functional aspects emerging from the characterization of two main components (NS3 and NS5 proteins) of the flavivirus replication complex. Most of the reviewed results were achieved within the European Union VIZIER Project, and cover topics that span from viral genomics to structural biology and inhibition mechanisms. The ultimate aim of the reported approaches is to shed light on the design and development of antiviral drug leads.


Journal of Biological Chemistry | 1999

The Prosegments of Furin and PC7 as Potent Inhibitors of Proprotein Convertases IN VITRO AND EX VIVO ASSESSMENT OF THEIR EFFICACY AND SELECTIVITY

Mei Zhong; Jon Scott Munzer; Ajoy Basak; Suzanne Benjannet; Seyed J. Mowla; Etienne Decroly; Michel Chrétien; Nabil G. Seidah

All proprotein convertases (PCs) of the subtilisin/kexin family contain an N-terminal prosegment that is presumed to act both as an intramolecular chaperone and an inhibitor of its parent enzyme. In this work, we examined inhibition by purified, recombinant bacterial prosegments of furin and PC7 on the in vitro processing of either the fluorogenic peptide pERTKR-MCA or the human immunodeficiency virus envelope glycoprotein gp160. These propeptides are potent inhibitors that display measurable selectivity toward specific proprotein convertases. Small, synthetic decapeptides derived from the C termini of the prosegments are also potent inhibitors, albeit less so than the full-length proteins, and the C-terminal P1 arginine is essential for inhibition. The bacterial, recombinant prosegments were also used to generate specific antisera, allowing us to study the intracellular metabolic fate of the prosegments of furin and PC7 expressed via vaccinia virus constructs. These vaccinia virus recombinants, along with transient transfectants of the preprosegments of furin and PC7, efficiently inhibited theex vivo processing of the neurotrophins nerve growth factor and brain-derived neurotrophic factor. Thus, we have demonstrated for the first time that PC prosegments, expressed ex vivo as independent domains, can act in trans to inhibit precursor maturation by intracellular PCs.


Journal of Biological Chemistry | 1996

Identification of the paired basic convertases implicated in HIV gp160 processing based on in vitro assays and expression in CD4+ cell lines.

Etienne Decroly; Sandrine Wouters; C. Di Bello; Claude Lazure; Jean Marie Ruysschaert; Nabil G. Seidah

The human immunodeficiency virus HIV envelope glycoprotein gp160 is synthesized as an inactive precursor, which is processed into its fusiogenic form gp120/gp41 by host cell proteinases during its intracellular trafficking. Kexin/subtilisin-related endoproteases have been proposed to be enzyme candidates for this maturation process. In the present study, 1) we examined the ability of partially purified precursor convertases and their isoforms to cleave gp160 in vitro. The data demonstrate that all the convertases tested specifically cleave the HIV envelope glycoprotein into gp120 and gp41. 2) We demonstrated that a 19-amino acid model peptide spanning the gp120/gp41 junction is cleaved by all convertases at the same gp160 site as that recognized in HIV-infected cells. 3) In an effort to evaluate specific convertase inhibitors, we showed that the α1-antitrypsin variant, α1-PDX, inhibits equally well the ability of the tested convertases to cleave gp160 in vitro. 4) Three lymphocyte cell lines were screened by reverse transcription polymerase chain reaction in an effort to identify which are the convertases expressed in the most common HIV target, the CD4+ lymphocytes. The data demonstrate that furin, PC5/6, and the newly cloned PC7 are the main transcribed convertases, suggesting that these proteinases are the major gp160-converting enzymes in T4 lymphocytes.


Biochimica et Biophysica Acta | 1993

Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes.

Isabelle Martin; Fabienne Defrise-Quertain; Etienne Decroly; Michel Vandenbranden; Robert Brasseur; Jean Marie Ruysschaert

For several retroviruses, the N-terminal hydrophobic sequence of the viral envelope glycoprotein has been shown to play a crucial role in the interaction between the virus and the host cell membrane. We report here on the interaction of a synthetic 16 residues peptide corresponding to the gp41 NH2-terminal sequence of Human Immunodeficiency Virus with the phospholipid bilayer. Fluorescence energy transfer measurements show that this peptide can induce lipid mixing of large unilamellar vesicles (LUV) of various compositions at pH 7.4 and 37 degrees C. LUV undergo fusion, provided they contained phosphatidylethanolamine (PE) in their lipid composition. To provide insight into the mechanism of the fusion event, the peptide secondary structure and orientation in the lipid bilayer were determined using Fourier Transform Infrared Spectroscopy (FTIR). The peptide adopts mainly a beta-sheet conformation in the absence of lipids. After interaction with LUV the beta-sheet is partly converted into alpha-helix. The orientation of the peptide with respect to the lipid acyl chains depends on the presence of PE in the lipid bilayer. The peptide is inserted into the lipid bilayer with the helix axis oriented parallel to the lipid acyl chains in the fused vesicles, whereas it is adsorbed parallel to the lipid/water interface in the aggregated vesicles. The role of the two kinds of orientation during the fusion event is discussed.


Journal of Virology | 2008

Coronavirus Nonstructural Protein 16 Is a Cap-0 Binding Enzyme Possessing (Nucleoside-2′O)-Methyltransferase Activity

Etienne Decroly; Isabelle Imbert; Bruno Coutard; Mickaël Bouvet; Barbara Selisko; Karine Alvarez; Alexander E. Gorbalenya; Eric J. Snijder; Bruno Canard

ABSTRACT The coronavirus family of positive-strand RNA viruses includes important pathogens of livestock, companion animals, and humans, including the severe acute respiratory syndrome coronavirus that was responsible for a worldwide outbreak in 2003. The unusually complex coronavirus replicase/transcriptase is comprised of 15 or 16 virus-specific subunits that are autoproteolytically derived from two large polyproteins. In line with bioinformatics predictions, we now show that feline coronavirus (FCoV) nonstructural protein 16 (nsp16) possesses an S-adenosyl-l-methionine (AdoMet)-dependent RNA (nucleoside-2′O)-methyltransferase (2′O-MTase) activity that is capable of cap-1 formation. Purified recombinant FCoV nsp16 selectively binds to short capped RNAs. Remarkably, an N7-methyl guanosine cap (7MeGpppAC3-6) is a prerequisite for binding. High-performance liquid chromatography analysis demonstrated that nsp16 mediates methyl transfer from AdoMet to the 2′O position of the first transcribed nucleotide, thus converting 7MeGpppAC3-6 into 7MeGpppA2′OMeC3-6. The characterization of 11 nsp16 mutants supported the previous identification of residues K45, D129, K169, and E202 as the putative K-D-K-E catalytic tetrad of the enzyme. Furthermore, residues Y29 and F173 of FCoV nsp16, which may be the functional counterparts of aromatic residues involved in substrate recognition by the vaccinia virus MTase VP39, were found to be essential for both substrate binding and 2′O-MTase activity. Finally, the weak inhibition profile of different AdoMet analogues indicates that nsp16 has evolved an atypical AdoMet binding site. Our results suggest that coronavirus mRNA carries a cap-1, onto which 2′O methylation follows an order of events in which 2′O-methyl transfer must be preceded by guanine N7 methylation, with the latter step being performed by a yet-unknown N7-specific MTase.


PLOS Pathogens | 2010

In vitro reconstitution of SARS-coronavirus mRNA cap methylation.

Mickaël Bouvet; Claire Debarnot; Isabelle Imbert; Barbara Selisko; Eric J. Snijder; Bruno Canard; Etienne Decroly

SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5′ end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2′O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 7MeGpppA-RNAs. The latter are then selectively 2′O-methylated by the 2′O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 7MeGpppA2′OMe-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC50 values in the micromolar range, providing a validated basis for anti-coronavirus drug design.


PLOS Pathogens | 2011

Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-O-Methyltransferase nsp10/nsp16 Complex

Etienne Decroly; Claire Debarnot; François Ferron; Mickaël Bouvet; Bruno Coutard; Isabelle Imbert; Laure Gluais; Nicolas Papageorgiou; Andrew Sharff; Gérard Bricogne; Miguel Ortiz-Lombardía; Julien Lescar; Bruno Canard

Cellular and viral S-adenosylmethionine-dependent methyltransferases are involved in many regulated processes such as metabolism, detoxification, signal transduction, chromatin remodeling, nucleic acid processing, and mRNA capping. The Severe Acute Respiratory Syndrome coronavirus nsp16 protein is a S-adenosylmethionine-dependent (nucleoside-2′-O)-methyltransferase only active in the presence of its activating partner nsp10. We report the nsp10/nsp16 complex structure at 2.0 Å resolution, which shows nsp10 bound to nsp16 through a ∼930 Å2 surface area in nsp10. Functional assays identify key residues involved in nsp10/nsp16 association, and in RNA binding or catalysis, the latter likely through a SN2-like mechanism. We present two other crystal structures, the inhibitor Sinefungin bound in the S-adenosylmethionine binding pocket and the tighter complex nsp10(Y96F)/nsp16, providing the first structural insight into the regulation of RNA capping enzymes in (+)RNA viruses.


Biochemical Journal | 2003

Processing of alpha4 integrin by the proprotein convertases: histidine at position P6 regulates cleavage.

Eric Bergeron; Ajoy Basak; Etienne Decroly; Nabil G. Seidah

The proprotein convertases (PCs) participate in the limited proteolysis of integrin alpha4 subunit at the H(592)VISKR(597) downward arrow ST site (where underlined residues indicate positively charged amino acids important for PC-mediated cleavage and downward arrow indicates the cleavage site), since this cleavage is inhibited by the serpin alpha1-PDX (alpha1-antitrypsin Portland). Co-expression of alpha4 with each convertase in LoVo (furin-deficient human colon carcinoma) cells revealed that furin and proprotein convertase 5A (PC5A) are the best pro-alpha4 convertases. In agreement, processing of endogenous pro-alpha4 in human lymphoblastoid CEM-T4 cells was enhanced greatly in stable transfectants overexpressing either enzyme. In many leucocyte cell lines, the expression of furin closely correlated with the endogenous processing efficacy, suggesting that furin is a candidate pro-alpha4 convertase. Mutational analysis showed that replacement of P1 Arg(597) with alanine (R597A) abrogated cleavage, whereas the P6 mutant H592R is even better processed by the endogenous convertases of Chinese-hamster ovary CHO-K1 cells. In vitro kinetic studies using synthetic peptides confirmed the importance of a positively charged residue at P6 and showed that wild-type alpha4 processing is performed best by furin and PC5A at acidic and neutral pHs, respectively. Biosynthetic analysis of pro-alpha4 and its H592R and H592K mutants in the presence or absence of the weak base, NH(4)Cl, revealed that the P6 histidine residue renders its processing by furin sensitive to cellular pH. This suggests that pro-alpha4 cleavage occurs preferentially in acidic compartments. In conclusion, although the accepted furin processing motif is Arg-Xaa-(Lys/Arg)-Arg downward arrow, our data further extend it to include a regulatory histidine residue at P6 in precursors that lack a basic residue at P4.


FEBS Letters | 1997

Comparative functional role of PC7 and furin in the processing of the HIV envelope glycoprotein gp160

Etienne Decroly; Suzanne Benjannet; Diane Savaria; Nabil G. Seidah

© 1997 Federation of European Biochemical Societies.


Antiviral Research | 2009

Flaviviral methyltransferase/RNA interaction: Structural basis for enzyme inhibition

Mario Milani; Eloise Mastrangelo; Michela Bollati; Barbara Selisko; Etienne Decroly; Mickaël Bouvet; Bruno Canard; Martino Bolognesi

Abstract Flaviviruses are the causative agents of severe diseases such as Dengue or Yellow fever. The replicative machinery used by the virus is based on few enzymes including a methyltransferase, located in the N-terminal domain of the NS5 protein. Flaviviral methyltransferases are involved in the last two steps of the mRNA capping process, transferring a methyl group from S-adenosyl-l-methionine onto the N7 position of the cap guanine (guanine-N7 methyltransferase) and the ribose 2′O position of the first nucleotide following the cap guanine (nucleoside-2′O methyltransferase). The RNA capping process is crucial for mRNA stability, protein synthesis and virus replication. Such an essential function makes methyltransferases attractive targets for the design of antiviral drugs. In this context, starting from the crystal structure of Wesselsbron flavivirus methyltransferase, we elaborated a mechanistic model describing protein/RNA interaction during N7 methyl transfer. Next we used an in silico docking procedure to identify commercially available compounds that would display high affinity for the methyltransferase active site. The best candidates selected were tested in vitro to assay their effective inhibition on 2′O and N7 methyltransferase activities on Wesselsbron and Dengue virus (Dv) methyltransferases. The results of such combined computational and experimental screening approach led to the identification of a high-potency inhibitor.

Collaboration


Dive into the Etienne Decroly's collaboration.

Top Co-Authors

Avatar

Bruno Canard

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Barbara Selisko

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bruno Coutard

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Isabelle Imbert

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mickaël Bouvet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Marie Ruysschaert

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Michel Vandenbranden

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge