Etienne Meunier
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Etienne Meunier.
Nature | 2014
Etienne Meunier; Mathias S. Dick; Roland Felix Dreier; Nura Schürmann; Daniela Kenzelmann Broz; Søren Warming; Merone Roose-Girma; Dirk Bumann; Nobuhiko Kayagaki; Kiyoshi Takeda; Masahiro Yamamoto; Petr Broz
Lipopolysaccharide from Gram-negative bacteria is sensed in the host cell cytoplasm by a non-canonical inflammasome pathway that ultimately results in caspase-11 activation and cell death. In mouse macrophages, activation of this pathway requires the production of type-I interferons, indicating that interferon-induced genes have a critical role in initiating this pathway. Here we report that a cluster of small interferon-inducible GTPases, the so-called guanylate-binding proteins, is required for the full activity of the non-canonical caspase-11 inflammasome during infections with vacuolar Gram-negative bacteria. We show that guanylate-binding proteins are recruited to intracellular bacterial pathogens and are necessary to induce the lysis of the pathogen-containing vacuole. Lysis of the vacuole releases bacteria into the cytosol, thus allowing the detection of their lipopolysaccharide by a yet unknown lipopolysaccharide sensor. Moreover, recognition of the lysed vacuole by the danger sensor galectin-8 initiates the uptake of bacteria into autophagosomes, which results in a reduction of caspase-11 activation. These results indicate that host-mediated lysis of pathogen-containing vacuoles is an essential immune function and is necessary for efficient recognition of pathogens by inflammasome complexes in the cytosol.
Nature Immunology | 2015
Etienne Meunier; Pierre Wallet; Roland Felix Dreier; Stéphanie Costanzo; Leonie Anton; Sebastian Rühl; Sébastien Dussurgey; Mathias S. Dick; Anne Kistner; Mélanie Rigard; Daniel Degrandi; Klaus Pfeffer; Masahiro Yamamoto; Thomas Henry; Petr Broz
The AIM2 inflammasome detects double-stranded DNA in the cytosol and induces caspase-1-dependent pyroptosis as well as release of the inflammatory cytokines interleukin 1β (IL-1β) and IL-18. AIM2 is critical for host defense against DNA viruses and bacteria that replicate in the cytosol, such as Francisella tularensis subspecies novicida (F. novicida). The activation of AIM2 by F. novicida requires bacteriolysis, yet whether this process is accidental or is a host-driven immunological mechanism has remained unclear. By screening nearly 500 interferon-stimulated genes (ISGs) through the use of small interfering RNA (siRNA), we identified guanylate-binding proteins GBP2 and GBP5 as key activators of AIM2 during infection with F. novicida. We confirmed their prominent role in vitro and in a mouse model of tularemia. Mechanistically, these two GBPs targeted cytosolic F. novicida and promoted bacteriolysis. Thus, in addition to their role in host defense against vacuolar pathogens, GBPs also facilitate the presentation of ligands by directly attacking cytosolic bacteria.The AIM2 inflammasome detects double-stranded DNA in the cytosol and induces caspase-1-dependent pyroptosis as well as release of the inflammatory cytokines IL-1β and IL-18. AIM2 is critical for host defense against DNA viruses and bacteria that replicate in the cytosol, such as Francisella novicida. AIM2 activation by F. novicida requires bacteriolysis, yet whether this process is accidental or a host-driven immune mechanism remained unclear. Using siRNA screening for nearly 500 interferon-stimulated genes, we identified guanylate-binding proteins GBP2 and GBP5 as key AIM2 activators during F. novicida infection. Their prominent role was validated in vitro and in a mouse model of tularemia. Mechanistically, these two GBPs target cytosolic F. novicida and promote bacteriolysis. Thus, besides their role in host defense against vacuolar pathogens, GBPs also facilitate the presentation of ligands by directly attacking cytosolic bacteria.
Nanomedicine: Nanotechnology, Biology and Medicine | 2012
Etienne Meunier; Agnès Coste; David Olagnier; Hélène Authier; Lise Lefèvre; Christophe Dardenne; José Bernad; Maryse Beraud; Emmanuel Flahaut; Bernard Pipy
Because of their outstanding physical properties, carbon nanotubes (CNTs) are promising new materials in the field of nanotechnology. It is therefore imperative to assess their adverse effects on human health. Monocytes/macrophages that recognize and eliminate the inert particles constitute the main target of CNTs. In this article, we report our finding that double-walled CNTs (DWCNTs) synergize with Toll-like receptor agonists to enhance IL-1β release in human monocytes. We show that DWCNTs-induced IL-1β secretion is exclusively linked to caspase-1 and to Nlrp3 inflammasome activation in human monocytes. We also establish that this activation requires DWCNTs phagocytosis and potassium efflux, but not reactive oxygen specied (ROS) generation. Moreover, inhibition of lysosomal acidification or cathepsin-B activation reduces DWCNT-induced IL-1β secretion, suggesting that Nlrp3 inflammasome activation occurs via lysosomal destabilization. Thus, DWCNTs present a health hazard due to their capacity to activate Nlrp3 inflammasome, recalling the inflammation caused by asbestos and hence demonstrating that they should be used with caution.
ACS Nano | 2014
Claire Sanchez; Darine El Hajj Diab; Vincent Connord; Pascal Clerc; Etienne Meunier; Bernard Pipy; Bruno Payré; Reasmey P. Tan; Michel Gougeon; J. Carrey; Véronique Gigoux; Daniel Fourmy
Nanotherapy using targeted magnetic nanoparticles grafted with peptidic ligands of receptors overexpressed in cancers is a promising therapeutic strategy. However, nanoconjugation of peptides can dramatically affect their properties with respect to receptor recognition, mechanism of internalization, intracellular trafficking, and fate. Furthermore, investigations are needed to better understand the mechanism whereby application of an alternating magnetic field to cells containing targeted nanoparticles induces cell death. Here, we designed a nanoplatform (termed MG-IONP-DY647) composed of an iron oxide nanocrystal decorated with a ligand of a G-protein coupled receptor, the cholecystokinin-2 receptor (CCK2R) that is overexpressed in several malignant cancers. MG-IONP-DY647 did not stimulate inflammasome of Raw 264.7 macrophages. They recognized cells expressing CCK2R with a high specificity, subsequently internalized via a mechanism involving recruitment of β-arrestins, clathrin-coated pits, and dynamin and were directed to lysosomes. Binding and internalization of MG-IONP-DY647 were dependent on the density of the ligand at the nanoparticle surface and were slowed down relative to free ligand. Trafficking of CCK2R internalized with the nanoparticles was slightly modified relative to CCK2R internalized in response to free ligand. Application of an alternating magnetic field to cells containing MG-IONP-DY647 induced apoptosis and cell death through a lysosomal death pathway, demonstrating that cell death is triggered even though nanoparticles of low thermal power are internalized in minute amounts by the cells. Together with pioneer findings using iron oxide nanoparticles targeting tumoral cells expressing epidermal growth factor receptor, these data represent a solid basis for future studies aiming at establishing the proof-of-concept of nanotherapy of cancers using ligand-grafted magnetic nanoparticles specifically internalized via cell surface receptors.
PLOS Pathogens | 2011
David Olagnier; Rose-Anne Lavergne; Etienne Meunier; Lise Lefèvre; Christophe Dardenne; Agnès Aubouy; Françoise Benoit-Vical; Bernhard Ryffel; Agnès Coste; Antoine Berry; Bernard Pipy
CD36 is the major receptor mediating nonopsonic phagocytosis of Plasmodium falciparum-parasitized erythrocytes by macrophages. Its expression on macrophages is mainly controlled by the nuclear receptor PPARγ. Here, we demonstrate that inflammatory processes negatively regulate CD36 expression on human and murine macrophages, and hence decrease Plasmodium clearance directly favoring the worsening of malaria infection. This CD36 downregulation in inflammatory conditions is associated with a failure in the expression and activation of PPARγ. Interestingly, using siRNA mediating knock down of Nrf2 in macrophages or Nrf2- and PPARγ-deficient macrophages, we establish that in inflammatory conditions, the Nrf2 transcription factor controls CD36 expression independently of PPARγ. In these conditions, Nrf2 activators, but not PPARγ ligands, enhance CD36 expression and CD36-mediated Plasmodium phagocytosis. These results were confirmed in human macrophages and in vivo where only Nrf2 activators improve the outcome of severe malaria. Collectively, this report highlights that the Nrf2 transcription factor could be an alternative target to PPARγ in the control of severe malaria through parasite clearance.
Cellular Microbiology | 2016
Etienne Meunier; Petr Broz
Detection and clearance of invading pathogens requires a coordinated response of the adaptive and innate immune system. Host cell, however, also features different mechanisms that restrict pathogen replication in a cell‐intrinsic manner, collectively referred to as cell‐autonomous immunity. In immune cells, the ability to unleash those mechanisms strongly depends on the activation state of the cell, which is controlled by cytokines or the detection of pathogen‐associated molecular patterns by pattern‐recognition receptors. The interferon (IFN) class of cytokines is one of the strongest inducers of antimicrobial effector mechanisms and acts against viral, bacterial and parasitic intracellular pathogens. This has been linked to the upregulation of several hundreds of IFN‐stimulated genes, among them the so‐called IFN‐inducible GTPases. Two subfamilies of IFN‐inducible GTPases, the immunity‐related GTPases (IRGs) and the guanylate‐binding proteins (GBPs), have gained attention due to their exceptional ability to specifically target intracellular vacuolar pathogens and restrict their replication by destroying their vacuolar compartment. Their repertoire has recently been expanded to the regulation of inflammasome complexes, which are cytosolic multi‐protein complexes that control an inflammatory cell death called pyroptosis and the release of cytokines like interleukin‐1β and interleukin‐18. Here we discuss recent advances in understanding the function, the targeting and regulation of IRG and GBP proteins during microbial infections.
DNA and Cell Biology | 2015
Etienne Meunier; Petr Broz
Lipopolysaccharide (LPS) from gram-negative bacteria is a classical pathogen-associated molecular pattern and a strong inducer of immune responses. While the detection of LPS on the cell surface and in the endosome by Toll-like receptor 4 (TLR4) has been studied for some time, it has only recently been discovered that LPS can also be sensed in the cytosol of cells by a noncanonical inflammasome pathway, resulting in the activation of the cysteine protease caspase-11. Intriguingly, activation of this pathway requires the production of interferons (IFNs) and the induction of a class of IFN-induced GTPases called guanylate-binding proteins (GBPs), which have previously been linked to cell-autonomous killing of intracellular microbes. In this study, we review the recent advances in our understanding of cytosolic LPS sensing and the function of mammalian GBPs.
European Journal of Immunology | 2018
Rosalie Heilig; Mathias S. Dick; Lorenzo Sborgi; Etienne Meunier; Sebastian Hiller; Petr Broz
The pro‐inflammatory cytokine IL‐1β is well known for its role in host defense and the initiation of potent inflammatory responses. It is processed from its inactive pro‐form by the inflammatory caspase‐1 into its mature bioactive form, which is then released from the cell via an unconventional secretion mechanism. Recently, gasdermin‐D has been identified as a new target of caspase‐1. After proteolytical cleavage of gasdermin‐D, the N‐terminal fragment induces pyroptosis, a lytic cell death, by forming large permeability pores in the plasma membrane. Here we show using the murine system that gasdermin‐D is required for IL‐1β secretion by macrophages, dendritic cells and partially in neutrophils, and that secretion is a cell‐lysis‐independent event. Liposome transport assays in vitro further demonstrate that gasdermin‐D pores are large enough to allow the direct release of IL‐1β. Moreover, IL‐18 and other small soluble cytosolic proteins can also be released in a lysis‐independent but gasdermin‐D‐dependent mode, suggesting that the gasdermin‐D pores allow passive the release of cytosolic proteins in a size‐dependent manner.
Nature Communications | 2015
Lise Lefèvre; Hélène Authier; Sokrates Stein; Clarisse Majorel; Bettina Couderc; Christophe Dardenne; Mohamad Ala Eddine; Etienne Meunier; José Bernad; Alexis Valentin; Bernard Pipy; Kristina Schoonjans; Agnès Coste
Liver receptor homologue-1 (LRH-1) is a nuclear receptor involved in the repression of inflammatory processes in the hepatointestinal tract. Here we report that LRH-1 is expressed in macrophages and induced by the Th2 cytokine IL-13 via a mechanism involving STAT6. We show that loss-of-function of LRH-1 in macrophages impedes IL-13-induced macrophage polarization due to impaired generation of 15-HETE PPARγ ligands. The incapacity to generate 15-HETE metabolites is at least partially caused by the compromised regulation of CYP1A1 and CYP1B1. Mice with LRH-1-deficient macrophages are, furthermore, highly susceptible to gastrointestinal and systemic Candida albicans infection. Altogether, these results identify LRH-1 as a critical component of the anti-inflammatory and fungicidal response of alternatively activated macrophages that acts upstream from the IL-13-induced 15-HETE/PPARγ axis.
Scientific Reports | 2016
Anne Drougard; Audren Fournel; Alysson Marlin; Etienne Meunier; Anne Abot; Tereza Bautzova; Thibaut Duparc; Katie Louche; Aurélie Batut; Alexandre Lucas; Sophie Le-Gonidec; Jean Lesage; Xavier Fioramonti; Cedric Moro; Philippe Valet; Patrice D. Cani; Claude Knauf
Apelin is a bioactive peptide involved in the control of energy metabolism. In the hypothalamus, chronic exposure to high levels of apelin is associated with an increase in hepatic glucose production, and then contributes to the onset of type 2 diabetes. However, the molecular mechanisms behind deleterious effects of chronic apelin in the brain and consequences on energy expenditure and thermogenesis are currently unknown. We aimed to evaluate the effects of chronic intracerebroventricular (icv) infusion of apelin in normal mice on hypothalamic inflammatory gene expression, energy expenditure, thermogenesis and brown adipose tissue functions. We have shown that chronic icv infusion of apelin increases the expression of pro-inflammatory factors in the hypothalamus associated with an increase in plasma interleukin-1 beta. In parallel, mice infused with icv apelin exhibit a significant lower energy expenditure coupled to a decrease in PGC1alpha, PRDM16 and UCP1 expression in brown adipose tissue which could explain the alteration of thermogenesis in these mice. These data provide compelling evidence that central apelin contributes to the development of type 2 diabetes by altering energy expenditure, thermogenesis and fat browning.