Etsushi Kato
National Institute for Environmental Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Etsushi Kato.
Science | 2015
Anders Ahlström; Michael R. Raupach; Guy Schurgers; Benjamin Smith; Almut Arneth; Martin Jung; Markus Reichstein; Josep G. Canadell; Pierre Friedlingstein; Atul K. Jain; Etsushi Kato; Benjamin Poulter; Stephen Sitch; Benjamin Stocker; Nicolas Viovy; Ying Ping Wang; Andy Wiltshire; Soenke Zaehle; Ning Zeng
The difference is found at the margins The terrestrial biosphere absorbs about a quarter of all anthropogenic carbon dioxide emissions, but the amount that they take up varies from year to year. Why? Combining models and observations, Ahlström et al. found that marginal ecosystems—semiarid savannas and low-latitude shrublands—are responsible for most of the variability. Biological productivity in these semiarid regions is water-limited and strongly associated with variations in precipitation, unlike wetter tropical areas. Understanding carbon uptake by these marginal lands may help to improve predictions of variations in the global carbon cycle. Science, this issue p. 895 Semi-arid regions cause most of the interannual variability of the terrestrial carbon dioxide sink. The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.
Journal of Climate | 2013
Victor Brovkin; Lena R. Boysen; Vivek K. Arora; J. P. Boisier; P. Cadule; L P Chini; Martin Claussen; Pierre Friedlingstein; B. J. J. M. van den Hurk; George C. Hurtt; Colin Jones; Etsushi Kato; N. de Noblet-Ducoudré; F. Pacifico; Julia Pongratz; M. Weiss
AbstractThe effects of land-use changes on climate are assessed using specified-concentration simulations complementary to the representative concentration pathway 2.6 (RCP2.6) and RCP8.5 scenarios performed for phase 5 of the Coupled Model Intercomparison Project (CMIP5). This analysis focuses on differences in climate and land–atmosphere fluxes between the ensemble averages of simulations with and without land-use changes by the end of the twenty-first century. Even though common land-use scenarios are used, the areas of crops and pastures are specific for each Earth system model (ESM). This is due to different interpretations of land-use classes. The analysis reveals that fossil fuel forcing dominates land-use forcing. In addition, the effects of land-use changes are globally not significant, whereas they are significant for regions with land-use changes exceeding 10%. For these regions, three out of six participating models—the Second Generation Canadian Earth System Model (CanESM2); Hadley Centre Glo...
Journal of Climate | 2013
Chris D. Jones; Eddy Robertson; Vivek K. Arora; Pierre Friedlingstein; Elena Shevliakova; Laurent Bopp; Victor Brovkin; Tomohiro Hajima; Etsushi Kato; Michio Kawamiya; Spencer Liddicoat; Keith Lindsay; Christian H. Reick; Caroline Roelandt; Joachim Segschneider; Jerry Tjiputra
AbstractThe carbon cycle is a crucial Earth system component affecting climate and atmospheric composition. The response of natural carbon uptake to CO2 and climate change will determine anthropogenic emissions compatible with a target CO2 pathway. For phase 5 of the Coupled Model Intercomparison Project (CMIP5), four future representative concentration pathways (RCPs) have been generated by integrated assessment models (IAMs) and used as scenarios by state-of-the-art climate models, enabling quantification of compatible carbon emissions for the four scenarios by complex, process-based models. Here, the authors present results from 15 such Earth system GCMs for future changes in land and ocean carbon storage and the implications for anthropogenic emissions. The results are consistent with the underlying scenarios but show substantial model spread. Uncertainty in land carbon uptake due to differences among models is comparable with the spread across scenarios. Model estimates of historical fossil-fuel emis...
Nature | 2017
Martin Jung; Markus Reichstein; Christopher R. Schwalm; Chris Huntingford; Stephen Sitch; Anders Ahlström; Almut Arneth; Gustau Camps-Valls; Philippe Ciais; Pierre Friedlingstein; Fabian Gans; Kazuhito Ichii; Atul K. Jain; Etsushi Kato; Dario Papale; Ben Poulter; Botond Ráduly; Christian Rödenbeck; Gianluca Tramontana; Nicolas Viovy; Ying-Ping Wang; Ulrich Weber; Sönke Zaehle; Ning Zeng
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance. Our study indicates that spatial climate covariation drives the global carbon cycle response.
Journal of Land Use Science | 2013
Etsushi Kato; Tsuguki Kinoshita; Akihiko Ito; Michio Kawamiya; Yoshiki Yamagata
Using a socioeconomic scenario of representative concentration scenarios, terrestrial emissions from biomass burning and anthropogenic land-use change for the twenty-first century are evaluated in a spatially explicit manner using a biogeochemical model. The model is validated with the historical net land-use change CO2 emission and biomass-burning trace gas emission: net land-use change CO2 emission for 1990s to be from 1.03 to 1.53 Pg C year−1 and black carbon emission from biomass burning during 1997–2000 to be 3.1 Tg BC year−1. For future emissions, uncertainty due to CO2 concentration and land-use change scenario is examined using sensitivity experiments and reveals significant effect of CO2 on the biomass-burning emissions in terms of direct effect of vegetation mass and the indirect feedback through the fire ignition probability. It also reveals the importance of CO2 fertilization on net land-use change CO2 emission through the regrowing absorption in abandoned agricultural land.
Scientific Reports | 2016
Yao Zhang; Xiangming Xiao; Luis Guanter; Sha Zhou; Philippe Ciais; Joanna Joiner; Stephen Sitch; Xiaocui Wu; Julian Nabel; Jinwei Dong; Etsushi Kato; Atul K. Jain; Andy Wiltshire; Benjamin Stocker
Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.
Progress in Earth and Planetary Science | 2014
Tomohiro Hajima; Michio Kawamiya; Michio Watanabe; Etsushi Kato; Kaoru Tachiiri; Masahiro Sugiyama; Shingo Watanabe; Hideki Okajima; Akinori Ito
Changes in the natural environment that are the result of human activities are becoming evident. Since these changes are interrelated and can not be investigated without interdisciplinary collaboration between scientific fields, Earth system science (ESS) is required to provide a framework for recognizing anew the Earth system as one composed of its interacting subsystems. The concept of ESS has been partially realized by Earth system models (ESMs). In this paper, we focus on modeling in ESS, review related findings mainly from the latest assessment report of the Intergovernmental Panel on Climate Change, and introduce tasks under discussion for the next phases of the following areas of science: the global nitrogen cycle, ocean acidification, land-use and land-cover change, ESMs of intermediate complexity, climate geoengineering, ocean CO2 uptake, and deposition of bioavailable iron in marine ecosystems. Since responding to global change is a pressing mission in Earth science, modeling will continue to contribute to the cooperative growth of diversifying disciplines and expanding ESS, because modeling connects traditional disciplines through explicit interaction between them.
Earth’s Future | 2017
Xuanming Su; Kiyoshi Takahashi; Shinichiro Fujimori; Tomoko Hasegawa; Katsumasa Tanaka; Etsushi Kato; Hideo Shiogama; Toshihiko Masui; Seita Emori
We investigated the feasibilities of 2.0°C and 1.5°C climate targets by considering the abatement potentials of a full suite of greenhouse gases, pollutants, and aerosols. We revised the inter-temporal dynamic optimization model DICE-2013R by introducing three features as follows. First, we applied a new marginal abatement cost curve derived under moderate assumptions regarding future socioeconomic development—the Shared Socioeconomic Pathways 2 (SSP2) scenario. Second, we addressed emission abatement for not only industrial CO2 but also land-use CO2, CH4, N2O, halogenated gases, CO, volatile organic compounds, SOx, NOx, black carbon and organic carbon. Third, we improved the treatment of the non-CO2 components in the climate module based on MAGICC 6.0. We obtained the following findings: (1) It is important to address the individual emissions in an analysis of low stabilization scenarios because abating land-use CO2, non-CO2 and aerosol emissions also contributes to maintaining a low level of radiative forcing and substantially affects the climate costs. (2) The 2.0°C target can be efficiently reached under the assumptions of the SSP2 scenario. (3) The 1.5°C target can be met with early deep cuts under the assumption of a temperature overshoot, and it will triple the carbon price and double the mitigation cost compared with the 2.0°C case.
Soil Science and Plant Nutrition | 2015
Hisashi Sato; Akihiko Ito; Akinori Ito; Takashi Ise; Etsushi Kato
Abstract Although climate conditions primarily determine the distribution and functioning of vegetation, vegetation also influences climate via biophysical and biogeochemical features such as evapotranspiration, albedo, carbon cycling, trace gas emissions and the roughness of the land surface. Forecasts of rapid climate change during the next 100~200 years, fueled by an increase in greenhouse gases, have motivated the development of land surface models (LSMs) that predict changes in vegetation functions. Here, we review how these models have been developed and used to simulate interactive processes between climate and the land surface. Current limitations and future perspectives of the LSMs are also presented.
Environmental Research Letters | 2016
Matthew Charles Cervarich; Shijie Shu; Atul K. Jain; Almut Arneth; Josep G. Canadell; Pierre Friedlingstein; R. A. Houghton; Etsushi Kato; Charles D. Koven; Prabir K. Patra; Benjamin Poulter; Stephen Sitch; Beni Stocker; Nicolas Viovy; Andy Wiltshire; Ning Zeng
This research was partly supported by the NASA Land Cover and Land Use Change Program (NNX14AD94G) and the US National Science Foundation (No. NSF-AGS-12-43071).
Collaboration
Dive into the Etsushi Kato's collaboration.
Commissariat à l'énergie atomique et aux énergies alternatives
View shared research outputs