Euan K. James
James Hutton Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Euan K. James.
Genome Biology | 2013
Thomas R Turner; Euan K. James; Philip S. Poole
Plant genomes contribute to the structure and function of the plant microbiome, a key determinant of plant health and productivity. High-throughput technologies are revealing interactions between these complex communities and their hosts in unprecedented detail.
Journal of Bacteriology | 2001
Prasad Gyaneshwar; Euan K. James; Natarajan Mathan; Pallavolu M. Reddy; Barbara Reinhold-Hurek; J. K. Ladha
Six closely related N2-fixing bacterial strains were isolated from surface-sterilized roots and stems of four different rice varieties. The strains were identified as Serratia marcescens by 16S rRNA gene analysis. One strain, IRBG500, chosen for further analysis showed acetylene reduction activity (ARA) only when inoculated into media containing low levels of fixed nitrogen (yeast extract). Diazotrophy of IRBG500 was confirmed by measurement of 15N2 incorporation and by sequence analysis of the PCR-amplified fragment of nifH. To examine its interaction with rice, strain IRBG500 was marked with gusA fused to a constitutive promoter, and the marked strain was inoculated onto rice seedlings under axenic conditions. At 3 days after inoculation, the roots showed blue staining, which was most intense at the points of lateral root emergence and at the root tip. At 6 days, the blue precipitate also appeared in the leaves and stems. More detailed studies using light and transmission electron microscopy combined with immunogold labeling confirmed that IRBG500 was endophytically established within roots, stems, and leaves. Large numbers of bacteria were observed within intercellular spaces, senescing root cortical cells, aerenchyma, and xylem vessels. They were not observed within intact host cells. Inoculation of IRBG500 resulted in a significant increase in root length and root dry weight but not in total N content of rice variety IR72. The inoculated plants showed ARA, but only when external carbon (e.g., malate, succinate, or sucrose) was added to the rooting medium.
The EMBO Journal | 2007
Simona Radutoiu; Lene Heegaard Madsen; Esben Bjørn Madsen; Anna Jurkiewicz; Eigo Fukai; Esben M. Quistgaard; Anita S. Albrektsen; Euan K. James; Søren Thirup; Jens Stougaard
Legume–Rhizobium symbiosis is an example of selective cell recognition controlled by host/non‐host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod‐factor receptor genes in Medicago truncatula and L. filicaulis, extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus. As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L. japonicus mutants and domain swaps between L. japonicus and L. filicaulis NFR1 and NFR5, we further demonstrate that LysM domains of the NFR1 and NFR5 receptors mediate perception of the bacterial Nod‐factor signal and that recognition depends on the structure of the lipochitin–oligosaccharide Nod‐factor. We show that a single amino‐acid variation in the LysM2 domain of NFR5 changes recognition of the Nod‐factor synthesized by the DZL strain and suggests a possible binding site for bacterial lipochitin–oligosaccharide signal molecules.
Molecular Plant-microbe Interactions | 2002
Euan K. James; Prasad Gyaneshwar; Natarajan Mathan; Wilfredo L. Barraquio; Pallavolu M. Reddy; Pietro P. M. Iannetta; Fábio Lopes Olivares; J. K. Ladha
A beta-glucoronidase (GUS)-marked strain of Herbaspirillum seropedicae Z67 was inoculated onto rice seedling cvs. IR42 and IR72. Internal populations peaked at over 10(6) log CFU per gram of fresh weight by 5 to 7 days after inoculation (DAI) but declined to 10(3) to 10(4) log CFU per gram of fresh weight by 28 DAI. GUS staining was most intense on coleoptiles, lateral roots, and at the junctions of some of the main and lateral roots. Bacteria entered the roots via cracks at the points of lateral root emergence, with cv. IR72 appearing to be more aggressively infected than cv. IR42. H. seropedicae subsequently colonized the root intercellular spaces, aerenchyma, and cortical cells, with a few penetrating the stele to enter the vascular tissue. Xylem vessels in leaves and stems were extensively colonized at 2 DAI but, in later harvests (7 and 13 DAI), a host defense reaction was often observed. Dense colonies of H. seropedicae with some bacteria expressing nitrogenase Fe-protein were seen within leaf and stem epidermal cells, intercellular spaces, and substomatal cavities up until 28 DAI. Epiphytic bacteria were also seen. Both varieties showed nitrogenase activity but only with added C, and the dry weights of the inoculated plants were significantly increased. Only cv. IR42 showed a significant (approximately 30%) increase in N content above that of the uninoculated controls, and it also incorporated a significant amount of 15N2.
Nature | 2005
Kozo Tanaka; Naomi Mukae; Hilary Dewar; Mark van Breugel; Euan K. James; Alan R. Prescott; Claude Antony; Tomoyuki U. Tanaka
For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore–microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules.
Molecular Plant-microbe Interactions | 2011
Prasad Gyaneshwar; Ann M. Hirsch; Lionel Moulin; Wen-Ming Chen; Geoffrey N. Elliott; Cyril Bontemps; Eduardo Gross; Janet I. Sprent; J. Peter; W. Young; Euan K. James
Rhizobia form specialized nodules on the roots of legumes (family Fabaceae) and fix nitrogen in exchange for carbon from the host plant. Although the majority of legumes form symbioses with members of genus Rhizobium and its relatives in class Alphaproteobacteria, some legumes, such as those in the large genus Mimosa, are nodulated predominantly by betaproteobacteria in the genera Burkholderia and Cupriavidus. The principal centers of diversity of these bacteria are in central Brazil and South Africa. Molecular phylogenetic studies have shown that betaproteobacteria have existed as legume symbionts for approximately 50 million years, and that, although they have a common origin, the symbiosis genes in both subclasses have evolved separately since then. Additionally, some species of genus Burkholderia, such as B. phymatum, are highly promiscuous, effectively nodulating several important legumes, including common bean (Phaseolus vulgaris). In contrast to genus Burkholderia, only one species of genus Cupriavidus (C. taiwanensis) has so far been shown to nodulate legumes. The recent availability of the genome sequences of C. taiwanensis, B. phymatum, and B. tuberum has paved the way for a more detailed analysis of the evolutionary and mechanistic differences between nodulating strains of alpha- and betaproteobacteria. Initial analyses of genome sequences have suggested that plant-associated Burkholderia spp. have lower G+C contents than Burkholderia spp. that are opportunistic human pathogens, thus supporting previous suggestions that the plant- and human-associated groups of Burkholderia actually belong in separate genera.
Microbial Ecology | 2012
Zulma Rocío Suárez-Moreno; Jesús Caballero-Mellado; Bruna G. Coutinho; Lucia Mendonça-Previato; Euan K. James; Vittorio Venturi
The genus Burkholderia comprises more than 60 species isolated from a wide range of niches. Although they have been shown to be diverse and ubiquitously distributed, most studies have thus far focused on the pathogenic species due to their clinical importance. However, the increasing number of recently described Burkholderia species associated with plants or with the environment has highlighted the division of the genus into two main clusters, as suggested by phylogenetical analyses. The first cluster includes human, animal, and plant pathogens, such as Burkholderia glumae, Burkholderia pseudomallei, and Burkholderia mallei, as well as the 17 defined species of the Burkholderia cepacia complex, while the other, more recently established cluster comprises more than 30 non-pathogenic species, which in most cases have been found to be associated with plants, and thus might be considered to be potentially beneficial. Several species from the latter group share characteristics that are of use when associating with plants, such as a quorum sensing system, the presence of nitrogen fixation and/or nodulation genes, and the ability to degrade aromatic compounds. This review examines the commonalities in this growing subgroup of Burkholderia species and discusses their prospective biotechnological applications.
The Plant Cell | 2005
Lene Krusell; Katja Krause; Thomas Ott; Guilhem Desbrosses; Ute Krämer; Shusei Sato; Yasukazu Nakamura; Satoshi Tabata; Euan K. James; Niels Sandal; Jens Stougaard; Masayoshi Kawaguchi; Ai Miyamoto; Norio Suganuma; Michael K. Udvardi
Symbiotic nitrogen fixation (SNF) by intracellular rhizobia within legume root nodules requires the exchange of nutrients between host plant cells and their resident bacteria. Little is known at the molecular level about plant transporters that mediate such exchanges. Several mutants of the model legume Lotus japonicus have been identified that develop nodules with metabolic defects that cannot fix nitrogen efficiently and exhibit retarded growth under symbiotic conditions. Map-based cloning of defective genes in two such mutants, sst1-1 and sst1-2 (for symbiotic sulfate transporter), revealed two alleles of the same gene. The gene is expressed in a nodule-specific manner and encodes a protein homologous with eukaryotic sulfate transporters. Full-length cDNA of the gene complemented a yeast mutant defective in sulfate transport. Hence, the gene was named Sst1. The sst1-1 and sst1-2 mutants exhibited normal growth and development under nonsymbiotic growth conditions, a result consistent with the nodule-specific expression of Sst1. Data from a previous proteomic study indicate that SST1 is located on the symbiosome membrane in Lotus nodules. Together, these results suggest that SST1 transports sulfate from the plant cell cytoplasm to the intracellular rhizobia, where the nutrient is essential for protein and cofactor synthesis, including nitrogenase biosynthesis. This work shows the importance of plant sulfate transport in SNF and the specialization of a eukaryotic transporter gene for this purpose.
Applied and Environmental Microbiology | 2005
Wen-Ming Chen; Sergio Miana de Faria; Rosângela Straliotto; Rosa Maria Pitard; Jean Luiz Simões-Araújo; Jui-Hsing Chou; Yi-Ju Chou; Edmundo Barrios; Alan R. Prescott; Geoffrey N. Elliott; Janet I. Sprent; J. Peter W. Young; Euan K. James
ABSTRACT Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes.
Plant Physiology | 2007
James White; Jürgen Prell; Euan K. James; Philip S. Poole
In this review, we consider the exchange of nutrients between the host plant and the bacterial microsymbiont in nitrogen-fixing legume root nodules. During nodule formation, the host tissues and the bacterial microsymbiont develop in response to each other to form a specialized tissue that maintains