Euan McLeod
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Euan McLeod.
Nature Nanotechnology | 2008
Euan McLeod; Craig B. Arnold
A number of non-lithographic techniques are now available for processing materials on the nanoscale, including optical techniques capable of producing features that are much smaller than the wavelength of light used. However, these techniques can be limited in speed, ease of use, cost of implementation, or the range of patterns they can write. Here we report how Bessel beam laser trapping of microspheres near surfaces can be used to enable near-field direct-write subwavelength nanopatterning. Using the microsphere as an objective lens to focus the processing laser, we demonstrate arbitrary patterns and individual features with minimum sizes of approximately 100 nm (which is less than one-third the processing wavelength) and a positioning accuracy better than 40 nm in aqueous and chemical environments. Submicron spacing is maintained between the near-field objective and the substrate without active feedback control. If implemented with an array of optical traps, this approach could lead to a high-throughput probe-based method for patterning surfaces with subwavelength features.
Nature Photonics | 2013
Onur Mudanyali; Euan McLeod; Wei Luo; Alon Greenbaum; Ahmet F. Coskun; Yves Hennequin; Cédric Allier; Aydogan Ozcan
The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles.
Optics Letters | 2008
Alexandre Mermillod-Blondin; Euan McLeod; Craig B. Arnold
Fluidic lenses allow for varifocal optical elements, but current approaches are limited by the speed at which focal length can be changed. Here we demonstrate the use of a tunable acoustic gradient (TAG) index of refraction lens as a fast varifocal element. The optical power of the TAG lens varies continuously, allowing for rapid selection and modification of the effective focal length at time scales of 1 mus and shorter. The wavefront curvature applied to the incident light is experimentally quantified as a function of time, and single-frame imaging is demonstrated. Results indicate that the TAG lens can successfully be employed to perform high-rate imaging at multiple locations.
Optics Letters | 2006
Euan McLeod; Adam B. Hopkins; Craig B. Arnold
A beam that resembles a Bessel beam on two scales is generated using a tunable acoustic gradient index of refraction (TAG) lens. The minor scale of the TAG-generated Bessel beam is nondiffracting and self-healing. The major scale of the beam diffracts while still forming a Bessel pattern due to the specific geometry of the TAG lens. The acoustic and optical theory behind the TAG lens is outlined, and the experimental beam itself is presented. The major and minor rings are explained, and the TAG beam is compared with both axicon-generated and conventionally focused Gaussian beams.
Scientific Reports | 2013
Qingshan Wei; Euan McLeod; Hangfei Qi; Zhe Wan; Ren Sun; Aydogan Ozcan
Computational microscopy tools, in particular lensfree on-chip imaging, provide a large field-of-view along with a long depth-of-field, which makes it feasible to rapidly analyze large volumes of specimen using a compact and light-weight on-chip imaging architecture. To bring molecular specificity to this high-throughput platform, here we demonstrate the use of plasmon-resonant metallic nanoparticles to automatically recognize different cell types based on their plasmon-enhanced lensfree holograms, detected and reconstructed over a large field-of-view of e.g., ~24 mm2.
Lab on a Chip | 2013
Euan McLeod; Wei Luo; Onur Mudanyali; Alon Greenbaum; Aydogan Ozcan
The development of lensfree on-chip microscopy in the past decade has opened up various new possibilities for biomedical imaging across ultra-large fields of view using compact, portable, and cost-effective devices. However, until recently, its ability to resolve fine features and detect ultra-small particles has not rivalled the capabilities of the more expensive and bulky laboratory-grade optical microscopes. In this Frontier Review, we highlight the developments over the last two years that have enabled computational lensfree holographic on-chip microscopy to compete with and, in some cases, surpass conventional bright-field microscopy in its ability to image nano-scale objects across large fields of view, yielding giga-pixel phase and amplitude images. Lensfree microscopy has now achieved a numerical aperture as high as 0.92, with a spatial resolution as small as 225 nm across a large field of view e.g., >20 mm(2). Furthermore, the combination of lensfree microscopy with self-assembled nanolenses, forming nano-catenoid minimal surfaces around individual nanoparticles has boosted the image contrast to levels high enough to permit bright-field imaging of individual particles smaller than 100 nm. These capabilities support a number of new applications, including, for example, the detection and sizing of individual virus particles using field-portable computational on-chip microscopes.
Annual Review of Biomedical Engineering | 2016
Aydogan Ozcan; Euan McLeod
High-resolution optical microscopy has traditionally relied on high-magnification and high-numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future.
ACS Nano | 2015
Euan McLeod; T U Dincer; Muhammed Veli; Yavuz N. Ertas; Chau Nguyen; Wei Luo; Alon Greenbaum; Alborz Feizi; Aydogan Ozcan
Sizing individual nanoparticles and dispersions of nanoparticles provides invaluable information in applications such as nanomaterial synthesis, air and water quality monitoring, virology, and medical diagnostics. Several conventional nanoparticle sizing approaches exist; however, there remains a lack of high-throughput approaches that are suitable for low-resource and field settings, i.e., methods that are cost-effective, portable, and can measure widely varying particle sizes and concentrations. Here we fill this gap using an unconventional approach that combines holographic on-chip microscopy with vapor-condensed nanolens self-assembly inside a cost-effective hand-held device. By using this approach and capturing time-resolved in situ images of the particles, we optimize the nanolens formation process, resulting in significant signal enhancement for the label-free detection and sizing of individual deeply subwavelength particles (smaller than λ/10) over a 30 mm(2) sample field-of-view, with an accuracy of ±11 nm. These time-resolved measurements are significantly more reliable than a single measurement at a given time, which was previously used only for nanoparticle detection without sizing. We experimentally demonstrate the sizing of individual nanoparticles as well as viruses, monodisperse samples, and complex polydisperse mixtures, where the sample concentrations can span ∼5 orders-of-magnitude and particle sizes can range from 40 nm to millimeter-scale. We believe that this high-throughput and label-free nanoparticle sizing platform, together with its cost-effective and hand-held interface, will make highly advanced nanoscopic measurements readily accessible to researchers in developing countries and even to citizen-scientists, and might especially be valuable for environmental and biomedical applications as well as for higher education and training programs.
Optics Express | 2009
Euan McLeod; Craig B. Arnold
Current demands on optical nanolithography require the ability to rapidly and cost-effectively write arbitrary patterns over large areas with sub-diffraction limit feature sizes. The challenge in accomplishing this with arrays of near-field probes is maintaining equal separations between the substrate and each probe, even over non-planar substrates. Here we demonstrate array-based laser nanolithography where each probe is a microsphere capable of fabricating 100 nm structures using 355 nm light when self-positioned near a surface by Bessel beam optical trapping. We achieve both a feature size uniformity and relative positioning accuracy better than 15 nm, which agrees well with our model. Further improvements are possible using higher power and/or narrower Bessel beam optical traps.
Reports on Progress in Physics | 2016
Euan McLeod; Aydogan Ozcan
In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading.