Eudes Eterno Fileti
Federal University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eudes Eterno Fileti.
Journal of Physical Chemistry Letters | 2014
Eudes Eterno Fileti; Vitaly V. Chaban
Light fullerenes attract significant interest in pharmacy and medicine as drug vectors and antioxidants and to block AIDS virus enzyme. The progress of these applications is hindered by poor solubility of fullerenes in aqueous media. We propose a highly efficient hydrophilic system to disperse the C60 fullerene based on the accurate atomistic-resolution computer simulations. The introduced system is based on 1-butyl-3-methylimidazolium tetrafluoroborate, [C4C1IM][BF4]-water mixtures. The first component is used to form a corona around C60 while exhibiting a significant miscibility with water. Structural and dynamical peculiarities of the C60-[C4C1IM][BF4]-water mixtures are discussed.
Journal of Physical Chemistry B | 2009
Cleiton Maciel; Eudes Eterno Fileti; Roberto Rivelino
Diverse atomistic parameters of C60 have been developed and utilized to simulate fullerene solutions in biological environments. However, no thermodynamic assessment and validation of these parameters have been so far realized. Here, we employ extensive molecular dynamics simulations with the thermodynamic integration method in the isothermal-isobaric ensemble to investigate the transfer of a single fullerene C60 between different solvent environments using different potential models. A detailed analysis is performed on the structure and standard Gibbs free energy of transfer of C60 from benzene to ethanol. All of the interactions concerned in the transfer process are included via atomistic models. We notice that having only structural and dynamical properties is not decisive to validate reliable atomic parameters capable of describing a more realistic thermodynamic process. Thus, we employ the calculated free energy of transfer to validate more accurate atomic parameters for the solvation thermodynamics of fullerenes by direct comparison with the solubility experimental data.
Journal of Solution Chemistry | 2014
Vitaly V. Chaban; Cleiton Maciel; Eudes Eterno Fileti
Over 150 solvents have been probed to dissolve light fullerenes, but with a quite moderate success. We uncover unusual mutual polarizability of C60 fullerene and selected room-temperature ionic liquids, which can be applied in numerous applications, e.g. to significantly promote solubility/miscibility of the highly hydrophobic C60 molecule. We report electron density and molecular dynamics analysis supported by the state-of-the-art hybrid density functional theory and empirical simulations with a specifically refined potential. The analysis suggests the workability of the proposed scheme and opens a new direction to obtain well-dispersed fullerene containing systems. A range of common molecular solvents and novel ionic solvents are compared to 1-butyl-3-methylimidazolium tetrafluoroborate.Graphical Abstract
Journal of Physical Chemistry B | 2013
Márcia I. Souza; Ygor M. Jaques; Gislaine Patricia de Andrade; Anderson Orzari Ribeiro; Emerson Rodrigo da Silva; Eudes Eterno Fileti; Erick de Souza Avilla; M. V. B. Pinheiro; Klaus Krambrock; Wendel A. Alves
Hypericin is a photosensitizer with promising applications in photodynamic therapy (PDT) for cancer and infectious diseases treatments. Herein, we present a basic research study of L-diphenylalanine micro/nanotubes (FF-NTs) functionalized with hypericin. The system has special properties according to the hypericin concentration, with direct consequences on both morphological and photophysical behaviors. A clear dependence between the size of the tubes and the concentration of hypericin is revealed. The generation of reactive oxygen species (ROS) is found to be improved by ∼57% in the presence of FF-NTs, as indirectly measured from the absorbance profile of 1,3-diphenylisobenzofuran (DPBF). In addition, when hypericin appears conjugated with FF-NTs, the characteristic fluorescence lifetime is significantly boosted, demonstrating the role of FF-NTs to enhance the photophysical properties and stabilizing the fluorophore in excited states. Electron paramagnetic resonance allows the proposition of a mechanism for the generation of ROS. Molecular dynamics simulations bring new insights into the interaction between hypericin and peptide assemblies, suggesting the spatial organization of the fluorophore onto the surface of the supramolecular structures as a key element to improve the photophysical properties reported here.
Journal of Physical Chemistry Letters | 2015
Guilherme Colherinhas; Eudes Eterno Fileti; Vitaly V. Chaban
Small monovalent ions are able to polarize carbonaceous nanostructures significantly. We report a systematic investigation of how monovalent and divalent ions influence valence electronic structure of graphene. Pure density functional theory is employed to compute electronic energy levels. We show that the lowest unoccupied molecular orbital (LUMO) of an alkali ion (Li(+), Na(+)) fits between the highest occupied molecular orbital (HOMO) and LUMO of graphene, in such a way as to tune the bottom of the conduction band (i.e., band gap). In turn, Mg(2+) shares its orbitals with graphene. The corresponding binding energy is ca. 4 times higher than that in the case of alkali ions. The reported insights provide inspiration for engineering electrical properties of the graphene-containing systems.
Journal of Physical Chemistry B | 2014
Vitaly V. Chaban; Cleiton Maciel; Eudes Eterno Fileti
Atomistic molecular dynamics simulations were employed to investigate the solvation properties of the fullerene C60 in binary water/dimethyl sulfoxide (DMSO) mixtures. Structural analysis indicates a preferential solvation with the predominance of DMSO molecules in the first solvation shell for the solutions with low concentrations of DMSO. PMF calculations indicate a maximization of the hydrophobic interaction at low concentrations of DMSO. The contact minima indicate a tendency of aggregation of these nanostructures in water/DMSO mixtures and in the both pure solvents. The free energy of solvation suggests that the hydrophobicity of the fullerene increases monotonically with the increase of DMSO concentration. This result is incompatible with the polarity of DMSO, since it was expected that increasing the concentration of DMSO entailed an increase of C60 solubility.
Journal of Computational Chemistry | 2015
Guillaume Chevrot; Eudes Eterno Fileti; Vitaly V. Chaban
Using molecular dynamics simulations, the structure of model mini‐protein was thoroughly characterized in the imidazolium‐based amino acid ionic liquids and their aqueous solutions. Complete substitution of water by organic cations and anions further results in hindered conformational flexibility of the mini‐protein. This observation suggests that amino acid‐based ionic liquids are able to defend proteins from thermally induced denaturation. We show by means of radial distributions that the mini‐protein is efficiently solvated by both solvents due to a good mutual miscibility. Amino acid‐based anions prevail in the first coordination sphere of positively charged sites of the mini‐protein whereas water molecules prevail in the first coordination sphere of negatively charged sites of the mini‐protein.
Journal of Physical Chemistry B | 2014
Guilherme Colherinhas; Eudes Eterno Fileti
Surfactant-like peptide (SLP) based nanostructures are investigated using all-atomistic molecular dynamics (MD) simulations. We report structure properties of nanostructures belonging to the ANK peptide group. In particular, the mathematical models for the two A3K membranes, A6K nanotube, and A9K nanorod were developed. Our MD simulation results are consistent with the experimental data, indicating that A3K membranes are stable in two different configurations: (1) SLPs are tilted relative to the normal membrane plane; (2) SLPs are interdigitated. The former configuration is energetically more stable. The cylindrical nanostructures feature a certain order of the A6K peptides. In turn, the A9K nanorod does not exhibit any long-range ordering. Both nanotube and nanorod structure contain large amounts of water inside. Consequently, these nanostructures behave similar to hydrogels. This property may be important in the context of biotechnology. Binding energy analysis-in terms of Coulomb and van der Waals contributions-unveils an increase as the peptide size increases. The electrostatic interaction constitutes 70-75% of the noncovalent attraction energy between SLPs. The nanotubular structures are notably stable, confirming that A6K peptides preferentially form nanotubes and A9K peptides preferentially form nanorods.
Journal of Peptide Science | 2014
Márcia I. Souza; Emerson Rodrigo da Silva; Ygor M. Jaques; Fabio Furlan Ferreira; Eudes Eterno Fileti; Wendel A. Alves
Hybrid associates formed between peptide assemblies and fluorophores are attractive mainly because of their unique properties for biomedical applications. Recently, we demonstrated that the production of reactive oxygen species (ROS) by hypericin and their stability in excited states are enhanced upon conjugation with l,l‐diphenylalanine microtubes (FF‐MNTs). Although the detailed mechanisms responsible for improving the photophysical properties of ROS remain unclear, tentative hypotheses have suggested that the driving force is the growth of overall dipolar moments ascribed either to coupling between aligned H2O dipoles within the ordered structures or to the organization of hypericin molecules on peptide interfaces. To provide new insights on ROS activity in hypericin/FF‐MNTs hybrids and further explore the role of water in this respect, we present results obtained from investigations on the behavior of these complexes organized into different crystalline arrangements. Specifically, we monitored and compared the photophysical performance of hypericin bound to FF‐MNTs with peptides organized in both hexagonal (water‐rich) and orthorhombic (water‐free) symmetries. From a theoretical perspective, we present the results of new molecular dynamics simulations that highlight the distinct hypericin/peptide interaction at the interface of FF‐MNTs for the different symmetries. As a conclusion, we propose that although water enhances photophysical properties, the organization induced by peptide structures and the availability of a hydrophobic environment surrounding the hypericin/peptide interface are paramount to optimizing ROS generation. The findings presented here provide useful basic research insights for designing peptide/fluorophore complexes with outstanding technological potential. Copyright
Journal of Physical Chemistry Letters | 2015
Vitaly V. Chaban; Eudes Eterno Fileti; Oleg V. Prezhdo
Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C60(NO2)12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyball surface. NO oxidizes into NO2, and C60 falls apart, liberating CO2. At the highest temperatures, CO2 gives rise to diatomic carbon. The study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material.