Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene L. Stewart is active.

Publication


Featured researches published by Eugene L. Stewart.


Cell | 2002

Crystal Structure of the Glucocorticoid Receptor Ligand Binding Domain Reveals a Novel Mode of Receptor Dimerization and Coactivator Recognition

Randy K. Bledsoe; Valerie G. Montana; Thomas B. Stanley; Chris J. Delves; Christopher J. Apolito; David D. McKee; Thomas G. Consler; Derek J. Parks; Eugene L. Stewart; Timothy M. Willson; Millard H. Lambert; John T. Moore; Kenneth H. Pearce; H. Eric Xu

Transcriptional regulation by the glucocorticoid receptor (GR) is mediated by hormone binding, receptor dimerization, and coactivator recruitment. Here, we report the crystal structure of the human GR ligand binding domain (LBD) bound to dexamethasone and a coactivator motif derived from the transcriptional intermediary factor 2. Despite structural similarity to other steroid receptors, the GR LBD adopts a surprising dimer configuration involving formation of an intermolecular beta sheet. Functional studies demonstrate that the novel dimer interface is important for GR-mediated activation. The structure also reveals an additional charge clamp that determines the binding selectivity of a coactivator and a distinct ligand binding pocket that explains its selectivity for endogenous steroid hormones. These results establish a framework for understanding the roles of protein-hormone and protein-protein interactions in GR signaling pathways.


Vitamins and Hormones Series | 2004

Structure and Function of the Glucocorticoid Receptor Ligand Binding Domain

Randy K. Bledsoe; Eugene L. Stewart; Kenneth H. Pearce

After binding to an activating ligand, such as corticosteroid, the glucocorticoid receptor (GR) performs an impressive array of functions ranging from nuclear translocation, oligomerization, cofactor/kinase/transcription factor association, and DNA binding. One of the central functions of the receptor is to regulate gene expression, an activity triggered by ligand binding. In this role, GR acts as an adapter molecule by encoding the ligands message within the structural flexibility of the ligand binding domain (LBD). The purpose of this review is to discuss the many structural and functional features of the GR LBD in light of recent successful biochemical and crystallographic studies. Progress in this area of research promises to reveal new strategies and insights allowing for the design of novel drugs to treat inflammatory diseases, diabetic conditions, steroid resistance, and cancers.


Bioorganic & Medicinal Chemistry Letters | 2008

The first X-ray crystal structure of the glucocorticoid receptor bound to a non-steroidal agonist

Kevin P. Madauss; Randy K. Bledsoe; Iain Mcfarlane Mclay; Eugene L. Stewart; Iain Uings; Gordon G. Weingarten; Shawn P. Williams

The amino-pyrazole 2,6-dichloro-N-ethyl benzamide 1 is a selective GR agonist with dexamethasone-like in vitro potency. Its X-ray crystal structure in the GR LBD (Glucocorticoid ligand-binding domain) is described and compared to other reported structures of steroidal GR agonists in the GR LBD (3E7C).


Journal of Medicinal Chemistry | 2015

Discovery, Synthesis, and Biological Evaluation of Thiazoloquin(az)olin(on)es as Potent CD38 Inhibitors

Curt Dale Haffner; J. David Becherer; Eric E. Boros; Rodolfo Cadilla; Tiffany Carpenter; David John Cowan; David N. Deaton; Yu Guo; W. Wallace Harrington; Brad R. Henke; Michael Jeune; Istvan Kaldor; Naphtali Milliken; Kim G. Petrov; Frank Preugschat; Christie Schulte; Barry George Shearer; Todd W. Shearer; Terrence L. Jr. Smalley; Eugene L. Stewart; J. Darren Stuart; John C. Ulrich

A series of thiazoloquin(az)olinones were synthesized and found to have potent inhibitory activity against CD38. Several of these compounds were also shown to have good pharmacokinetic properties and demonstrated the ability to elevate NAD levels in plasma, liver, and muscle tissue. In particular, compound 78c was given to diet induced obese (DIO) C57Bl6 mice, elevating NAD > 5-fold in liver and >1.2-fold in muscle versus control animals at a 2 h time point. The compounds described herein possess the most potent CD38 inhibitory activity of any small molecules described in the literature to date. The inhibitors should allow for a more detailed assessment of how NAD elevation via CD38 inhibition affects physiology in NAD deficient states.


Journal of Medicinal Chemistry | 2012

Rational design of potent non-nucleoside inhibitors of HIV-1 reverse transcriptase.

Pek Yoke Chong; Paul Sebahar; Michael Youngman; Dulce Maria Garrido; Huichang Zhang; Eugene L. Stewart; Robert T. Nolte; Liping Wang; Robert G. Ferris; Mark P. Edelstein; Kurt Weaver; Amanda Mathis; Andrew J. Peat

A new series of non-nucleoside reverse transcriptase inhibitors based on an imidazole-amide biarylether scaffold has been identified and shown to possess potent antiviral activity against HIV-1, including the NNRTI-resistant Y188L mutated virus. X-ray crystallography of inhibitors bound to reverse transcriptase, including a structure of the Y188L RT protein, was used extensively to help identify and optimize the key hydrogen-bonding motif. This led directly to the design of compound 43 that exhibits remarkable antiviral activity (EC50<1 nM) against a wide range of NNRTI-resistant viruses and a favorable pharmacokinetic profile across multiple species.


Journal of Medicinal Chemistry | 2010

Structure Guided Design of 5-Arylindazole Glucocorticoid Receptor Agonists and Antagonists

Christopher M. Yates; Peter J. Brown; Eugene L. Stewart; Christopher Patten; Robert J. H. Austin; Jason A. Holt; Jodi M. Maglich; Davina C. Angell; Rosemary Sasse; Simon Taylor; Iain Uings; Ryan P. Trump

Glucocorticoid receptor (GR) agonists have been used for more than half a century as the most effective treatment of acute and chronic inflammatory conditions despite serious side effects that accompany their extended use that include glucose intolerance, muscle wasting, skin thinning, and osteoporosis. As a starting point for the identification of GR ligands with an improved therapeutic index, we wished to discover selective nonsteroidal GR agonists and antagonists with simplified structure compared to known GR ligands to serve as starting points for the optimization of dissociated GR modulators. To do so, we selected multiple chemical series by structure guided docking studies and evaluated GR agonist activity. From these efforts we identified 5-arylindazole compounds that showed moderate binding to the glucocorticoid receptor (GR) with clear opportunities for further development. Structure guided optimization was used to design arrays that led to potent GR agonists and antagonists. Several in vitro and in vivo experiments were utilized to demonstrate that GR agonist 23a (GSK9027) had a profile similar to that of a classical steroidal GR agonist.


Bioorganic & Medicinal Chemistry Letters | 2001

2-Amino-4,6-diarylpyridines as novel ligands for the estrogen receptor.

Brad R. Henke; David H. Drewry; Stacey A. Jones; Eugene L. Stewart; Susan L. Weaver; Robert W. Wiethe

We have prepared a novel series of 2-amino-4,6-diarylpyridines that function as ligands of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta). These compounds bind to both ERalpha and ERbeta with a modest selectivity for the alpha subtype. The most potent of these analogues, compound 19, has a K(i)=20nM at ERalpha. These molecules represent a novel template for designing potentially useful ligands for the estrogen receptor.


Journal of Medicinal Chemistry | 2014

Discovery of a Potent Boronic Acid Derived Inhibitor of the HCV RNA-Dependent RNA Polymerase.

Andrew Maynard; Renae M. Crosby; Byron Ellis; Robert Hamatake; Zhi Hong; Brian A. Johns; Kirsten M Kahler; Cecilia S. Koble; Anna L. Leivers; Martin Robert Leivers; Amanda Mathis; Andrew J. Peat; Jeffrey J. Pouliot; Christopher Don Roberts; Vicente Samano; Rachel M Schmidt; Gary K. Smith; Andrew Spaltenstein; Eugene L. Stewart; Pia Thommes; Elizabeth M. Turner; Christian Voitenleitner; Jill Walker; Kurt Weaver; Shawn P. Williams; Lois L. Wright; Zhiping Z. Xiong; David Haigh; J. Brad Shotwell

A boronic acid moiety was found to be a critical pharmacophore for enhanced in vitro potency against wild-type hepatitis C replicons and known clinical polymorphic and resistant HCV mutant replicons. The synthesis, optimization, and structure-activity relationships associated with inhibition of HCV replication in a subgenomic replication system for a series of non-nucleoside boron-containing HCV RNA-dependent RNA polymerase (NS5B) inhibitors are described. A summary of the discovery of 3 (GSK5852), a molecule which entered clinical trials in subjects infected with HCV in 2011, is included.


Journal of Medicinal Chemistry | 2015

Discovery of 4-Amino-8-quinoline Carboxamides as Novel, Submicromolar Inhibitors of NAD-Hydrolyzing Enzyme CD38.

J.D Becherer; Eric E. Boros; Tiffany Carpenter; David John Cowan; David N. Deaton; Curt Dale Haffner; Michael Jeune; Istvan Kaldor; J.C Poole; Frank Preugschat; T.R Rheault; Christie Schulte; Barry George Shearer; Todd W. Shearer; L.M Shewchuk; Terrence L. Jr. Smalley; Eugene L. Stewart; J.D Stuart; John C. Ulrich

Starting from the micromolar 8-quinoline carboxamide high-throughput screening hit 1a, a systematic exploration of the structure-activity relationships (SAR) of the 4-, 6-, and 8-substituents of the quinoline ring resulted in the identification of approximately 10-100-fold more potent human CD38 inhibitors. Several of these molecules also exhibited pharmacokinetic parameters suitable for in vivo animal studies, including low clearances and decent oral bioavailability. Two of these CD38 inhibitors, 1ah and 1ai, were shown to elevate NAD tissue levels in liver and muscle in a diet-induced obese (DIO) C57BL/6 mouse model. These inhibitor tool compounds will enable further biological studies of the CD38 enzyme as well as the investigation of the therapeutic implications of NAD enhancement in disease models of abnormally low NAD.


Journal of Chemical Information and Modeling | 2008

Kinase-targeted library design through the application of the PharmPrint methodology.

Felix DeAnda; Eugene L. Stewart; Michael J. Reno; David H. Drewry

The PharmPrint methodology, as modified and implemented by Deanda and Stewart, was prospectively evaluated for use as a virtual high-throughput screening tool by applying it to the design of target-focused arrays. To this end, PharmPrint quantitative structure-activity relationship (QSAR) models for the prediction of AKT1, Aurora-A, and ROCK1 inhibition were constructed and used to virtually screen two large combinatorial libraries. Based on predicted activities, an Aurora-A targeted array and a ROCK1 targeted array were designed and synthesized. One control group per designed array was also synthesized to assess the enrichment levels achieved by the QSAR models. For the Aurora-A targeted array, the hit rate, against the intended target, was 42.9%, whereas that of the control group was 0%. Thus, the enrichment level achieved by the Aurora-A QSAR model was incalculable. For the ROCK1 targeted array, the hit rate against the intended target was 30.6%, whereas that of the control group was 5.10%, making the enrichment level achieved by the ROCK1 QSAR model 6-fold above control. Clearly, these results support the use of the PharmPrint methodology as a virtual screening tool for the design of kinase-targeted arrays.

Collaboration


Dive into the Eugene L. Stewart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas B. Stanley

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge