Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene Lih is active.

Publication


Featured researches published by Eugene Lih.


Biomacromolecules | 2011

In Situ Forming and Rutin-Releasing Chitosan Hydrogels As Injectable Dressings for Dermal Wound Healing

Ngoc Quyen Tran; Eugene Lih; Ki Dong Park

An in situ gel-forming system composed of rutin- and tyramine-conjugated chitosan derivatives, horseradish peroxidase (HRP), and hydrogen peroxide (H(2)O(2)) was prepared and applied to dermal wound repair. Rutin was employed to enhance production and accumulation of extracellular matrix in the healing process. In vitro study demonstrates that released rutin significantly enhanced cell proliferation as compared with media without rutin. In vivo wound healing study was performed by injecting hydrogels on rat dorsal wounds with a diameter of 8 mm for 14 days. Histological results demonstrated that rutin-conjugated hydrogel exhibited enhancement of wound healing as compared with treatments with PBS, hydrogel without rutin, and a commercialized wound dressing (Duoderm). More specifically, rutin-conjugated hydrogels induced better defined formation of neo-epithelium and thicker granulation, which is closer to the original epithelial tissue. As a result, this study suggests that the in situ gel-forming system can be a promising injectable gel-type wound dressing.


Biomacromolecules | 2010

Supramolecular Hydrogels Exhibiting Fast In Situ Gel Forming and Adjustable Degradation Properties

Ngoc Quyen Tran; Eugene Lih; Kyung Min Park; Ki Dong Park

Fast in situ forming supramolecular hydrogels consisted of the tyramine-conjugated supramolecular structures and chitosan derivative were prepared via an enzymatic reaction with horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). The gel formation was varied within a time period of 5 s to 10 min by controlling the concentrations of HRP, H(2)O(2), and polymers. Tyramine conjugation at different sites of the supramolecular structure resulted in significant changes in physical properties and the degradation time of the hydrogels that were confirmed by water uptake, compressive strength and degradation tests. In addition, the hydrogels showed a good cytocompatibility in vitro. These hydrogels could be promising injectable biomaterials with adjustable degradation times to control both the cellular behaviors as a regenerative cell matrix and the drug release behavior as a drug delivery vehicle.


ACS Applied Materials & Interfaces | 2016

Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration

Eugene Lih; Ki Wan Park; So Young Chun; Hyuncheol Kim; Tae Gyun Kwon; Dong Keun Han

Chronic kidney disease is now recognized as a major health problem, but current therapies including dialysis and renal replacement have many limitations. Consequently, biodegradable scaffolds to help repairing injured tissue are emerging as a promising approach in the field of kidney tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) is a useful biomedical material, but its insufficient biocompatibility caused a reduction in cell behavior and function. In this work, we developed the kidney-derived extracellular matrix (ECM) incorporated PLGA scaffolds as a cell supporting material for kidney tissue regeneration. Biomimetic PLGA scaffolds (PLGA/ECM) with different ECM concentrations were prepared by an ice particle leaching method, and their physicochemical and mechanical properties were characterized through various analyses. The proliferation of renal cortical epithelial cells on the PLGA/ECM scaffolds increased with an increase in ECM concentrations (0.2, 1, 5, and 10%) in scaffolds. The PLGA scaffold containing 10% of ECM has been shown to be an effective matrix for the repair and reconstitution of glomerulus and blood vessels in partially nephrectomized mice in vivo, compared with only PLGA control. These results suggest that not only can the tissue-engineering techniques be an effective alternative method for treatment of kidney diseases, but also the ECM incorporated PLGA scaffolds could be promising materials for biomedical applications including tissue engineered scaffolds and biodegradable implants.


Colloids and Surfaces B: Biointerfaces | 2016

Synergistic effect of anti-platelet and anti-inflammation of drug-coated Co–Cr substrates for prevention of initial in-stent restenosis

Eugene Lih; Jee Won Jung; Dong June Ahn; Dong Keun Han

Antiplatelet and antithrombotic therapies are systematically considered to prevent restenosis following coronary stent implantation. Currently, patients receiving medicated stents are prescribed to orally take anticoagulants and antiplatelet drugs such as aspirin (ASP) and prasugrel (PRAS). Propolis (PROP) known as a natural organic compound was recently evaluated for its antiplatelet activity, antibiotics and immunomodulatory activities. In this study, antiplatelet drug-coated Co-Cr substrates were prepared with biodegradable poly(d,l-lactide) (PDLLA) containing ASP, PRA, or PROP using electrospray and the blood compatibility of the different substrates was investigated by measuring protein adsorption and platelet adhesion. In addition, the anti-inflammatory properties of the modified Co-Cr surfaces were assessed by measuring IL-8 and IL-6 expression levels in human endothelial cell cultures. Drug-coated surfaces were found to resist the adsorption of fibrinogen when compared to bare Co-Cr or PDLLA-coated Co-Cr. Interestingly, ASP- and PROP-containing substrates not only showed reduced adhesion of platelets and delayed coagulation time, but also drastically reduced the expression level of IL-8 and IL-6. Such results are supported that ASP- or PROP-coated Co-Cr can be potentially used as a stent material to mitigate early stage of restenosis. The developed coating materials might be an interesting alternative to systemic anticoagulant therapies prescribed after stent implantation.


Acta Biomaterialia | 2016

Fabrication and characteristics of dual functionalized vascular stent by spatio-temporal coating.

Seong Min Kim; Kwang Sook Park; Eugene Lih; Young Joon Hong; Jong Hee Kang; Ik Hwan Kim; Myung Ho Jeong; Dong Keun Han

UNLABELLED Stent implantation with balloon angioplasty is a widely used treatment for coronary artery diseases. Stents have been developed from bare metal stent (BMS) to advanced forms such as drug-eluting stent (DES). However, modern DES still causes thrombosis and/or in-stent restenosis as long-term outcomes. For effective prevention of these problems, we fabricated a dual functionalized stent using spatio-temporal coating, which has two different surfaces, as a novel type of DES. Hyaluronic acid conjugated with dopamine (HA-DA) was applied to a bare cobalt-chromium (CC) stent prior to abluminal coating of sirolimus (SRL)-in-polymer such as poly(d,l-lactide). The SRL-in-polymer (P+S) coated on the abluminal surface of the HA-DA modified stent showed highly stable coating layer and prevented the crack formation after ballooning. In the blood- and cyto-compatibility tests, HA-DA coating displayed suppressive effects on adhesion and activation of platelets and maintained the cell viability and proliferation of human coronary artery endothelial cells even under the existence of SRL. In in vivo study using porcine restenosis model, the neointimal area and inflammation score of the dual functionalized stent with HA-DA and P+S were significantly reduced than those of BMS. It is expected that this novel type of DES can be effectively applied to utilize diverse anti-proliferative drugs and bioactive polymers. STATEMENT OF SIGNIFICANCE Stents have been developed from bare metal stent to advanced forms such as drug-eluting stents (DESs). However, even DESs can still cause in-stent restenosis as long-term outcomes. This paper demonstrated a novel DES using spatio-temporal coating by dopamine-mediated hyaluronic acid coating (HA-DA) before asymmetric coating of sirolimus-in-poly(d,l-lactide) (P+S). It showed stable coating surface and prevented crack formation after ballooning. HA-DA coating also had an inhibitive effect on adhesion of platelets and maintained cell viability of endothelial cells even under the existence of sirolimus. Additionally, in vivo neointima area and inflammation score of HA-DA/P+S stent significantly decreased than those of BMS. We expected that this novel type of DES can be effectively applied to introduce diverse anti-proliferative drugs and bioactive molecules.


Biomaterials Research | 2016

Effects of poly(L-lactide-ε-caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid).

Eun Young Kang; Eugene Lih; Ik Hwan Kim; Dong Keun Han

BackgroundBiodegradable poly(L-lactic acid) (PLLA) is one of the most widely used polymer in biomedical devices, but it still has limitations such as inherent brittleness and acidic degradation products. In this work, PLLA blends with poly(L-lactide-ε-caprolactone) (PLCL) and Mg(OH)2 were prepared by the thermal processing to improve their physico-mechanical and thermal properties. In addition, the neutralizing effect of Mg(OH)2 was evaluated by degradation study.ResultsThe elongation of PLLA remarkably increased from 3 to 164.4 % and the glass transition temperature (Tg) of PLLA was slightly reduced from 61 to 52 °C by adding PLCL additive. Mg(OH)2 in polymeric matrix not only improved the molecular weight reduction and mechanical strength of PLLA, but also neutralized the acidic byproducts generated during polyester degradation.ConclusionsTherefore, the results demonstrated that the presence of PLCL and Mg(OH)2 additives in PLLA matrix could prevent the thermal decomposition and control degradation behavior of polyester.


Journal of Tissue Engineering | 2016

Optimal conjugation of catechol group onto hyaluronic acid in coronary stent substrate coating for the prevention of restenosis

Eugene Lih; Seul Gi Choi; Dong June Ahn; Dong Keun Han

Although endovascular stenting has been used as an interventional therapy to treat cardio- and cerebro-vascular diseases, it is associated with recurrent vascular diseases following stent thrombosis and in-stent restenosis. In this study, a metallic stent was coated with dopamine-conjugated hyaluronic acid with different ratios of catechol group to improve hemocompatibility and re-endothelialization. Especially, we were interested in how much amount of catechol group is appropriate for the above-mentioned purposes. Therefore, a series of dopamine-conjugated hyaluronic acid conjugates with different ratios of catechol group were synthesized via a carbodiimide coupling reaction. Dopamine-conjugated hyaluronic acid conjugates were characterized with 1H-nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the amount of catechol group in dopamine-conjugated hyaluronic acid was measured by ultraviolet spectrometer. Co-Cr substrates were polished and coated with various dopamine-conjugated hyaluronic acid conjugates under pH 8.5. Dopamine-conjugated hyaluronic acid amounts on the substrate were quantified by micro-bicinchoninic acid assay. Surface characteristics of dopamine-conjugated hyaluronic-acid-coated Co-Cr were evaluated by water contact angle, scanning electron microscopy, and atomic force microscopy. The hemocompatibility of the surface-modified substrates was assessed by protein adsorption and platelet adhesion tests. Adhesion and activation of platelets were confirmed with scanning electron microscopy and lactate dehydrogenase assay. Human umbilical vein endothelial cells were cultured on the substrates, and the viability, adhesion, and proliferation were investigated through cell counting kit-8 assay and fluorescent images. Obtained results demonstrated that optimal amounts of catechol group (100 µmol) in the dopamine-conjugated hyaluronic acid existed in terms of various properties such as hemocompatibility and cellular responses.


ACS Nano | 2018

Modified Magnesium Hydroxide Nanoparticles Inhibit the Inflammatory Response to Biodegradable Poly(lactide-co-glycolide) Implants

Eugene Lih; Chang Hun Kum; Wooram Park; So Young Chun; Youngjin Cho; Kwang-Sook Park; Young Joon Hong; Dong June Ahn; Byung-Soo Kim; Tae Gyun Kwon; Myung Ho Jeong; Jeffrey A. Hubbell; Dong Keun Han

Biodegradable polymers have been extensively used in biomedical applications, ranging from regenerative medicine to medical devices. However, the acidic byproducts resulting from degradation can generate vigorous inflammatory reactions, often leading to clinical failure. We present an approach to prevent acid-induced inflammatory responses associated with biodegradable polymers, here poly(lactide- co-glycolide), by using oligo(lactide)-grafted magnesium hydroxide (Mg(OH)2) nanoparticles, which neutralize the acidic environment. In particular, we demonstrated that incorporating the modified Mg(OH)2 nanoparticles within degradable coatings on drug-eluting arterial stents efficiently attenuates the inflammatory response and in-stent intimal thickening by more than 97 and 60%, respectively, in the porcine coronary artery, compared with that of drug-eluting stent control. We also observed that decreased inflammation allows better reconstruction of mouse renal glomeruli in a kidney tissue regeneration model. Such modified Mg(OH)2 nanoparticles may be useful to extend the applicability and improve clinical success of biodegradable devices used in various biomedical fields.


Tissue Engineering and Regenerative Medicine | 2018

In Vivo Validation Model of a Novel Anti-Inflammatory Scaffold in Interleukin-10 Knockout Mouse

Jung Yeon Kim; So Young Chun; Sang Hoon Lee; Eugene Lih; Jeongshik Kim; Dae Hwan Kim; Yun-Sok Ha; Jae-Wook Chung; Jun Nyung Lee; Bum Soo Kim; Hyun Tae Kim; Eun Sang Yoo; Dong Keun Han; Tae Gyun Kwon; Byung Ik Jang

BACKGROUND:We fabricated anti-inflammatory scaffold using Mg(OH)2-incorporated polylactic acid-polyglycolic acid copolymer (MH-PLGA). To demonstrate the anti-inflammatory effects of the MH-PLGA scaffold, an animal model should be sensitive to inflammatory responses. The interleukin-10 knockout (IL-10 KO) mouse is a widely used bowel disease model for evaluating inflammatory responses, however, few studies have evaluated this mouse for the anti-inflammatory scaffold.METHODS:To compare the sensitivity of the inflammatory reaction, the PLGA scaffold was implanted into IL-10 KO and C57BL/6 mouse kidneys. Morphology, histology, immunohistochemistry, and gene expression analyses were carried out at weeks 1, 4, 8, and 12. The anti-inflammatory effect and renal regeneration potency of the MH-PLGA scaffold was also compared to those of PLGA in IL-10 KO mice.RESULTS:The PLGA scaffold-implanted IL-10 KO mice showed kidneys relatively shrunken by fibrosis, significantly increased inflammatory cell infiltration, high levels of acidic debris residue, more frequent CD8-, C-reactive protein-, and ectodysplasin A-positive cells, and higher expression of pro-inflammatory and fibrotic factors compared to the control group. The MH-PLGA scaffold group showed lower expression of pro-inflammatory and fibrotic factors, low immune cell infiltration, and significantly higher expression of anti-inflammatory factors and renal differentiation related genes compared to the PLGA scaffold group.CONCLUSION:These results indicate that the MH-PLGA scaffold had anti-inflammatory effects and high renal regeneration potency. Therefore, IL-10 KO mice are a suitable animal model for in vivo validation of novel anti-inflammatory scaffolds.


Acta Biomaterialia | 2018

Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold–mediated chondrogenesis

Kwang-Sook Park; Byoung-Ju Kim; Eugene Lih; Wooram Park; Soo-Hong Lee; Dong Keun Han

Artificial scaffolds made up of various synthetic biodegradable polymers have been reported to have many advantages including cheap manufacturing, easy scale up, high mechanical strength, convenient manipulation, and molding into an unlimited variety of shapes. However, the synthetic biodegradable polymers still have the insufficiency for cartilage regeneration owing to their acidic degradation products. To reduce acidification by degradation of synthetic polymers, we incorporated magnesium hydroxide (MH) nanoparticles into porous polymer scaffold not only to effectively neutralize the acidic hydrolysate but also to minimize the structural disturbance of scaffolds. The neutralization effect of poly(D,L-lactic-co-glycolic acid; PLGA)/MH scaffold was confirmed with the maintenance of neutral pH, contrary to a PLGA scaffold with low pH. Further, the scaffolds were applied to evaluate the chondrogenic differentiation of the human bone marrow mesenchymal stem cells. In in vitro study, the PLGA/MH scaffold enhanced the chondrogenesis markers and reduced the calcification, compared to the PLGA scaffold. Additionally, the PLGA/MH scaffold reduced the release of inflammatory cytokines, compared to the PLGA scaffold, as the cell death decreased. Moreover, the addition of MH reduced necrotic cell death at the early stage of chondrogenic differentiation. Further, the necrotic cell death by the PLGA scaffold was mediated by cleavage of caspase-1, the so-called interleukin 1-converting enzyme, and MH alleviated it as well as nuclear factor kappa B expression. Furthermore, the PLGA/MH scaffold highly supported chondrogenic healing of rat osteochondral defect sites in in vivo study. Therefore, it was suggested that a synthetic polymer scaffold containing MH could be a novel healing tool to support cartilage regeneration and further treatment of orthopedic patients. STATEMENT OF SIGNIFICANCE Synthetic polymer scaffolds have been widely utilized for tissue regeneration. However, they have a disadvantage of releasing acidic products through degradation. This paper demonstrated a novel type of synthetic polymer scaffold with pH-neutralizing ceramic nanoparticles composed of magnesium hydroxide for cartilage regeneration. This polymer showed pH-neutralization property during polymer degradation and significant enhancement of chondrogenic differentiation of mesenchymal stem cells. It reduced not only chondrogenic calcification but also release of proinflammatory cytokines. Moreover, it has an inhibitory effect on necrotic cell death, particularly caspase-1-mediated necrotic cell death (pyroptosis). In in vivo study, it showed higher healing rate of the damaged cartilage in a rat osteochondral defect model. We expected that this novel type of scaffold can be effectively applied to support cartilage regeneration and further treatment of orthopedic patients.

Collaboration


Dive into the Eugene Lih's collaboration.

Top Co-Authors

Avatar

Dong Keun Han

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

So Young Chun

Kyungpook National University Hospital

View shared research outputs
Top Co-Authors

Avatar

Tae Gyun Kwon

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Bum Soo Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun-Sok Ha

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun Tae Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Kwang-Sook Park

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Na-Hee Yu

Kyungpook National University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge