Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene Lukanidin is active.

Publication


Featured researches published by Eugene Lukanidin.


Oncogene | 2001

The metastasis-associated Mts1(S100A4) protein could act as an angiogenic factor

Noona Ambartsumian; J Klingelhöfer; Mariam Grigorian; C Christensen; Marina Kriajevska; Eugene Tulchinsky; Georgii P. Georgiev; Berezin; Elisabeth Bock; J Rygaard; R Cao; Y Cao; Eugene Lukanidin

The involvement of Mts1(S100A4), a small Ca2+-binding protein in tumor progression and metastasis had been demonstrated. However, the mechanism by which mts1(S100A4) promoted metastasis had not been identified. Here we demonstrated that Mts1(S100A4) had significant stimulatory effect on the angiogenesis. We detected high incidence of hemangiomas – benign tumors of vascular origin in aged transgenic mice ubiquitously expressing the mts1(S100A4) gene. Furthermore, the serum level of the Mts1(S100A4) protein increased with ageing. Tumors developed in Mts1-transgenic mice revealed an enhanced vascular density. We showed that an oligomeric, but not a dimeric form of the Mts1(S100A4) protein was capable of enhancing the endothelial cell motility in vitro and stimulate the corneal neovascularization in vivo. An oligomeric fraction of the protein was detected in the conditioned media as well as in human serum. The data obtained allowed us to conclude that mts1(S100A4) might induce tumor progression via stimulation of angiogenesis.


Molecular and Cellular Biology | 1998

Fra-1 Induces Morphological Transformation and Increases In Vitro Invasiveness and Motility of Epithelioid Adenocarcinoma Cells

Olga Kustikova; Dmitrii A. Kramerov; Mariam Grigorian; Vladimir Berezin; Elisabeth Bock; Eugene Lukanidin; Eugene Tulchinsky

ABSTRACT Two cell lines originating from a common ancestral tumor, CSML0 and CSML100, were used as a model to study AP-1 transcription factors at different steps of tumor progression. CSML0 cells have an epithelial morphology; they express epithelial but not mesenchymal markers and are invasive neither in vitro nor in vivo. CSML100 possesses all characteristics of a highly progressive carcinoma. These cells do not form tight contacts, are highly invasive in vitro, and are metastatic in vivo. AP-1 activity was considerably higher in CSML100 cells than in CSML0 cells. There was a common predominant Jun component, namely, JunD, detected in both cell lines. We found that the enhanced level of AP-1 in CSML100 cells was due to high expression of Fra-1 and Fra-2 proteins, which were undetectable in CSML0 nuclear extracts. Analysis of the transcription of different AP-1 members in various cell lines derived from tumors of epithelial origin revealed a correlation of fra-1 expression with mesenchymal characteristics of carcinoma cells. Moreover, we show here for the first time that the expression of exogenous Fra-1 in epithelioid cells results in morphological changes that resemble fibroblastoid conversion. Cells acquire an elongated shape and become more motile and invasive in vitro. Morphological alterations were accompanied by transcriptional activation of certain genes whose expression is often induced at late stages of tumor progression. These data suggest a critical role of the Fra-1 protein in the development of epithelial tumors.


Cancer Research | 2005

Suppression of Tumor Development and Metastasis Formation in Mice Lacking the S100A4(mts1) Gene

Birgitte Grum-Schwensen; Jörg Klingelhöfer; Christian Hededam Berg; Christina El-Naaman; Mariam Grigorian; Eugene Lukanidin; Noona Ambartsumian

The S100A4(mts1) protein stimulates metastatic spread of tumor cells. An elevated expression of S100A4 is associated with poor prognosis in many human cancers. Dynamics of tumor development were studied in S100A4-deficient mice using grafts of CSML100, highly metastatic mouse mammary carcinoma cells. A significant delay in tumor uptake and decreased tumor incidences were observed in S100A4(-/-) mice compared with the wild-type controls. Moreover, tumors developed in S100A4(-/-) mice never metastasize. Immunohistochemical analyses of these tumors revealed reduced vascularity and abnormal distribution of host-derived stroma cells. Coinjection of CSML100 cells with immortalized S100A4(+/+) fibroblasts partially restored the dynamics of tumor development and the ability to form metastasis. These fibroblasts were characterized by an enhanced motility and invasiveness in comparison with S100A4(-/-) fibroblasts, as well as by the ability to release S100A4 into the tumor environment. Taken together, our results point to a determinative role of host-derived stroma cells expressing S100A4 in tumor progression and metastasis.


Oncogene | 2004

Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity

Birgitte Schmidt-Hansen; Dorte Örnås; Mariam Grigorian; Jörg Klingelhöfer; Eugene Tulchinsky; Eugene Lukanidin; Noona Ambartsumian

S100A4(mts1) protein expression has been strongly associated with metastatic tumor progression. It has been suggested as a prognostic marker for a number of human cancers. It is proposed that extracellular S100A4 accelerates cancer progression by stimulating the motility of endothelial cells, thereby promoting angiogenesis. Here we show that in 3D culture mouse endothelial cells (SVEC 4-10) respond to recombinant S100A4 by stimulating invasive growth of capillary-like structures. The outgrowth is not dependent on the stimulation of cell proliferation, but rather correlates with the transcriptional modulation of genes involved in the proteolytic degradation of extracellular matrix (ECM). Treatment of SVEC 4-10 with the S100A4 protein leads to the transcriptional activation of collagenase 3 (MMP-13) mRNA followed by subsequent release of the protein from the cells. β-Casein zymography demonstrates enhancement of proteolytic activity associated with MMP-13. This observation indicates that extracellular S100A4 stimulates the production of ECM degrading enzymes from endothelial cells, thereby stimulating the remodeling of ECM. This could explain the angiogenic and metastasis-stimulating activity of S100A4(mts1).


Circulation Research | 2005

Interdependent serotonin transporter and receptor pathways regulate S100A4/Mts1, a gene associated with pulmonary vascular disease

Allan Lawrie; Edda Spiekerkoetter; Eliana C. Martinez; Noona Ambartsumian; W. John Sheward; Margaret R. MacLean; Anthony J. Harmar; Ann Marie Schmidt; Eugene Lukanidin; Marlene Rabinovitch

Heightened expression of the S100 calcium–binding protein, S100A4/Mts1, is observed in pulmonary vascular disease. Loss of serotonin (5-hydroxytryptamine [5-HT]) receptors or of the serotonin transporter (SERT) attenuates pulmonary hypertension in animals, and polymorphisms causing gain of SERT function are linked to clinical pulmonary vascular disease. Because 5-HT induces release of S100&bgr;, we investigated the codependence of 5-HT receptors and SERT in regulating S100A4/Mts1 in human pulmonary artery smooth muscle cells (hPA-SMC). 5-HT elevated S100A4/Mts1 mRNA levels and increased S100A4/Mts1 protein in hPA-SMC lysates and culture media. S100A4/Mts1 in the culture media stimulated proliferation and migration of hPA-SMC in a manner dependent on the receptor for advanced glycation end products. Treatment with SB224289 (selective antagonist of 5-HT1B), fluoxetine (SERT inhibitor), SERT RNA-interference, and iproniazid (monoamine oxidase-A inhibitor), blocked 5-HT–induced S100A4/Mts1. 5-HT signaling mediated phosphorylation (p) of extracellular signal–regulated kinase 1/2 (pERK1/2), but pERK1/2 nuclear translocation depended on SERT, monoamine oxidase activity, and reactive oxygen species. Nuclear translocation of pERK1/2 was required for pGATA-4–mediated transcription of S100A4/Mts1. These data provide evidence for a mechanistic link between the 5-HT pathway and S100A4/Mts1 in pulmonary hypertension and explain how the 5-HT1B receptor and SERT are codependent in regulating S100A4/Mts1.


American Journal of Pathology | 2004

S100A4/Mts1 Produces Murine Pulmonary Artery Changes Resembling Plexogenic Arteriopathy and Is Increased in Human Plexogenic Arteriopathy

Steven Greenway; Robert Jan van Suylen; Gideon J. Du Marchie Sarvaas; Edwin P. Kwan; Noona Ambartsumian; Eugene Lukanidin; Marlene Rabinovitch

S100A4/Mts1 confers a metastatic phenotype in tumor cells and may also be related to resistance to apoptosis and angiogenesis. Approximately 5% of transgenic mice overexpressing S100A4/Mts1 develop pulmonary arterial changes resembling human plexogenic arteriopathy with intimal hyperplasia leading to occlusion of the arterial lumen. To assess the pathophysiological significance of this observation, immunohistochemistry was applied to quantitatively analyze S100A4/Mts1 expression in pulmonary arteries in surgical lung biopsies from children with pulmonary hypertension secondary to congenital heart disease. S100A4/Mts1 was not detected in pulmonary arteries with low-grade hypertensive lesions but was expressed in smooth muscle cells of lesions showing neointimal formation and with increased intensity in vessels with an occlusive neointima and plexiform lesions. Putative downstream targets of S100A4/Mts1 include Bax, which is pro-apoptotic, and the pro-angiogenic vascular endothelial growth factor (VEGF). The increase in S100A4/Mts1 expression precedes heightened expression of Bax in progressively severe neointimal lesions but in non-S100A4/Mts1-expressing cells. VEGF immunoreactivity did not correlate with severity of disease. The relationship of increased S100A4/Mts1 to pathologically similar lesions in the transgenic mice and patients occurs despite differences in localization (endothelial versus smooth muscle cells).


Journal of Biological Chemistry | 2002

Liprin β1, a Member of the Family of LAR Transmembrane Tyrosine Phosphatase-interacting Proteins, Is a New Target for the Metastasis-associated Protein S100A4 (Mts1)

Marina Kriajevska; Margrethe Fischer-Larsen; Ejvind Moertz; Ole Vorm; Eugene Tulchinsky; Mariam Grigorian; Noona Ambartsumian; Eugene Lukanidin

Metastasis-associated protein S100A4 (Mts1) induces invasiveness of primary tumors and promotes metastasis. S100A4 belongs to the family of small calcium-binding S100 proteins that are involved in different cellular processes as transducers of calcium signal. S100A4 modulates properties of tumor cells via interaction with its intracellular targets, heavy chain of non-muscle myosin and p53. Here we report identification of a new molecular target of the S100A4 protein, liprin β1. Liprin β1 belongs to the family of leukocyte common antigen-related (LAR) transmembrane tyrosine phosphatase-interacting proteins that may regulate LAR protein properties via interaction with another member of the family, liprin α1. We showed by the immunoprecipitation analysis that S100A4 interacts specifically with liprin β1 in vivo.Immunofluorescence staining demonstrated the co-localization of S100A4 and liprin β1 in the cytoplasm and particularly at the protrusion sites of the plasma membrane. We mapped the S100A4 binding site at the C terminus of the liprin β1 molecule between amino acid residues 938 and 1005. The S100A4-binding region contains two putative phosphorylation sites by protein kinase C and protein kinase CK2. S100A4-liprin β1 interaction resulted in the inhibition of liprin β1 phosphorylation by both kinases in vitro.


Cancer Research | 2005

Proteolytic Processing Converts the Repelling Signal Sema3E into an Inducer of Invasive Growth and Lung Metastasis

Claus Christensen; Noona Ambartsumian; Giorgio F. Gilestro; Birthe Thomsen; Paolo M. Comoglio; Luca Tamagnone; Per Guldberg; Eugene Lukanidin

We have previously shown that the expression of a semaphorin, known as a repelling cue in axon guidance, Sema3E, correlates with the ability to form lung metastasis in murine adenocarcinoma cell models. Now, besides providing evidence for the relevance of SEMA3E to human disease by showing that SEMA3E is frequently expressed in human cancer cell lines and solid tumors from breast cancer patients, we show biological activities of Sema3E, which support the implication of Sema3E in tumor progression and metastasis. In vivo, expression of Sema3E in mammary adenocarcinoma cells induces the ability to form experimental lung metastasis, and in vitro, the Sema3E protein exhibits both migration and growth promoting activity on endothelial cells and pheochromocytoma cells. This represents the first evidence of a metastasis-promoting function of a class 3 semaphorin, as this class of genes has hitherto been implicated in tumor biology only as tumor suppressors and negative regulators of growth. Moreover, we show that the full-size Sema3E protein is converted into a p61-Sema3E isoform due to furin-dependent processing, and by analyzing processing-deficient and truncated forms, we show that the generation of p61-Sema3E is required and sufficient for the function of Sema3E in lung metastasis, cell migration, invasive growth, and extracellular signal-regulated kinase 1/2 activation of endothelial cells. These findings suggest that certain breast cancer cells may increase their lung-colonizing ability by converting the growth repellent, Sema3E, into a growth attractant and point to a type of semaphorin signaling different from the conventional signaling induced by full-size dimeric class 3 semaphorins.


Molecular and Cellular Biology | 2006

Molecular mechanisms of Ca2+ signaling in neurons induced by the S100A4 protein

Darya Kiryushko; Vera Novitskaya; Vladislav Soroka; Jörg Klingelhöfer; Eugene Lukanidin; Vladimir Berezin; Elisabeth Bock

ABSTRACT The S100A4 protein belongs to the S100 family of vertebrate-specific proteins possessing both intra- and extracellular functions. In the nervous system, high levels of S100A4 expression are observed at sites of neurogenesis and lesions, suggesting a role of the protein in neuronal plasticity. Extracellular oligomeric S100A4 is a potent promoter of neurite outgrowth and survival from cultured primary neurons; however, the molecular mechanism of this effect has not been established. Here we demonstrate that oligomeric S100A4 increases the intracellular calcium concentration in primary neurons. We present evidence that both S100A4-induced Ca2+ signaling and neurite extension require activation of a cascade including a heterotrimeric G protein(s), phosphoinositide-specific phospholipase C, and diacylglycerol-lipase, resulting in Ca2+ entry via nonselective cation channels and via T- and L-type voltage-gated Ca2+ channels. We demonstrate that S100A4-induced neurite outgrowth is not mediated by the receptor for advanced glycation end products, a known target for other extracellular S100 proteins. However, S100A4-induced signaling depends on interactions with heparan sulfate proteoglycans at the cell surface. Thus, glycosaminoglycans may act as coreceptors of S100 proteins in neurons. This may provide a mechanism by which S100 proteins could locally regulate neuronal plasticity in connection with brain lesions and neurological disorders.


International Journal of Cancer | 2007

Expression of S100A4 by a variety of cell types present in the tumor microenvironment of human breast cancer

Teresa Cabezon; Julio E. Celis; Inge Skibshøj; Jörg Klingelhöfer; Mariam Grigorian; Pavel Gromov; Fritz Rank; June H. Myklebust; Gunhild M. Mælandsmo; Eugene Lukanidin; Noona Ambartsumian

The S100A4 protein, which is involved in the metastasis process, is a member of the S100 superfamily of Ca‐binding proteins. Members of this family are multifunctional signaling proteins with dual extra and intracellular functions involved in the regulation of diverse cellular processes. Several studies have established a correlation between S100A4 protein expression and worse prognosis for patients with various malignancies including breast cancer. In this article, we have used specific antibodies in combination with immunohistochemistry (IHC) to identify the cell types that express S100A4 in human breast cancer biopsies obtained from high‐risk patients. IHC analysis of 68 tumor biopsies showed that the protein is expressed preferentially by various cell types present in the tumor microenvironment (macrophages, fibroblasts, activated lymphocytes), rather than by the tumor cells themselves. Moreover, we show that the protein is externalized by the stroma cells to the fluid that bathes the tumor microenvironment, where it is found in several forms that most likely correspond to charge variants. Using a specific ELISA test, we detected a significant higher concentration of S100A4 in the tumor interstitial fluid (TIF) as compared to their corresponding normal counterparts (NIF).

Collaboration


Dive into the Eugene Lukanidin's collaboration.

Top Co-Authors

Avatar

Mariam Grigorian

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Klingelhöfer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Bock

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge