Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene O. Apostolov is active.

Publication


Featured researches published by Eugene O. Apostolov.


Journal of The American Society of Nephrology | 2005

Cisplatin Nephrotoxicity Is Mediated by Deoxyribonuclease I

Alexei G. Basnakian; Eugene O. Apostolov; Xiaoyan Yin; Markus Napirei; Hans Georg Mannherz; Sudhir V. Shah

Cisplatin is commonly used for chemotherapy in a wide variety of tumors; however, its use is limited by kidney toxicity. Although the exact mechanism of cisplatin-induced nephrotoxicity is not understood, several studies showed that it is associated with DNA fragmentation induced by an unknown endonuclease. It was demonstrated previously that deoxyribonuclease I (DNase I) is a highly active renal endonuclease, and its silencing by antisense is cytoprotective against the in vitro hypoxia injury of kidney tubular epithelial cells. This study used recently developed DNase1 knockout (KO) mice to determine the role of this endonuclease in cisplatin-induced nephrotoxicity. The data showed that DNase I represents approximately 80% of the total endonuclease activity in the kidney and cultured primary renal tubular epithelial cells. In vitro, primary renal tubular epithelial cells isolated from KO animals were resistant to cisplatin (8 microM) injury. DNase I KO mice were also markedly protected against the toxic injury induced by a single injection of cisplatin (20 mg/kg), by both functional (blood urea nitrogen and serum creatinine) and histologic criteria (tubular necrosis and in situ DNA fragmentation assessed by the terminal deoxynucleotidyl transferase nick end-labeling). These data provide direct evidence that DNase I is essential for kidney injury induced by cisplatin.


Journal of The American Society of Nephrology | 2010

Chronic Uremia Stimulates LDL Carbamylation and Atherosclerosis

Eugene O. Apostolov; Debarti Ray; Alena Savenka; Sudhir V. Shah; Alexei G. Basnakian

Carbamylated LDL (cLDL) is a potential atherogenic factor in chronic kidney disease (CKD). However, whether elevated plasma cLDL associates with atherosclerosis in vivo is unknown. Here, we induced CKD surgically in apolipoprotein E-deficient (ApoE(-/-)) mice fed a high-fat diet to promote the development of atherosclerosis. These mice had two- to threefold higher plasma levels of both oxidized LDL (oxLDL) and cLDL compared with control mice. Oral administration of urea increased cLDL approximately eightfold in ApoE(-/-) mice subjected to unilateral nephrectomy and a high-fat diet, but oxLDL did not rise. Regardless of the model, the uremic mice with high plasma cLDL had more severe atherosclerosis as measured by intravital ultrasound echography and en face aortic staining of lipid deposits. Furthermore, cLDL accumulated in the aortic wall and colocalized with ICAM-1 and macrophage infiltration. In summary, these data demonstrate that elevated plasma cLDL may represent an independent risk factor for uremia-induced atherosclerosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Carbamylated Low-Density Lipoprotein Induces Monocyte Adhesion to Endothelial Cells Through Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1

Eugene O. Apostolov; Sudhir V. Shah; Ercan Ok; Alexei G. Basnakian

Objective—Carbamylated low-density lipoprotein (LDL), the most abundant modified LDL isoform in human blood, has been recently implicated in causing the atherosclerosis-prone injuries to endothelial cells in vitro and atherosclerosis in humans. This study was aimed at testing the hypothesis that carbamylated LDL acts via inducing monocyte adhesion to endothelial cells and determining the adhesion molecules responsible for the recruitment of monocytes. Methods and Results—Exposure of human coronary artery endothelial cells with carbamylated LDL but not native LDL caused U937 monocyte adhesion and the induction of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 adhesion molecules as measured by cell enzyme-linked immunosorbent assay. Silencing of intercellular adhesion molecule-1 by siRNA or its inhibition using neutralizing antibody resulted in decreased monocyte adhesion to the endothelial cells. Similar silencing or neutralizing of vascular cell adhesion molecule-1 alone did not have an effect but was shown to contribute to intercellular adhesion molecule-1 when tested simultaneously. Conclusions—Taken together, these data provide evidence that intercellular adhesion molecule-1 in cooperation with vascular cell adhesion molecule-1 are essential for monocyte adhesion by carbamylated low-density lipoprotein-activated human vascular endothelial cells in vitro.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Scavenger Receptors of Endothelial Cells Mediate the Uptake and Cellular Proatherogenic Effects of Carbamylated LDL

Eugene O. Apostolov; Sudhir V. Shah; Debarti Ray; Alexei G. Basnakian

Objective—Carbamylated LDL (cLDL) has been recently shown to have robust proatherogenic effects on human endothelial cells in vitro, suggesting cLDL may have a significant role in atherosclerosis in uremia. The current study was designed to determine which receptors are used by cLDL and thus cause the proatherogenic effects. Methods and Results—In ex vivo or in vitro models as well as in intact animals, administration of cLDL was associated with endothelial internalization of cLDL and subendothelial translocation (transcytosis). In vitro recombinant LOX-1 and SREC-1 receptors showed the greatest cLDL binding. However, pretreatment of the endothelial cells with specific inhibiting antibodies demonstrated that cLDL binds mainly to LOX-1 and CD36 receptors. The transcytosis was dependent on SR-A1, SREC-1, and CD36 receptors whereas LOX-1 receptor was not involved. The cytotoxicity was mediated by several studied scavenger receptors, but cLDL-induced monocyte adhesion depended only on LOX-1. The cLDL-induced synthesis of LOX-1 protein significantly contributed to both cytotoxicity and accelerated monocyte adhesion to endothelial cells. Conclusions—Our data suggest that cLDL uses a unique pattern of scavenger receptors. They show that LOX-1 receptor, and partially CD36, SREC-1, and SR-A1 receptors, are essential for the proatherogenic effects of cLDL on human endothelial cells.


Journal of Clinical Investigation | 2013

Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury

Abolfazl Zarjou; Subhashini Bolisetty; Reny Joseph; Amie Traylor; Eugene O. Apostolov; Paolo Arosio; József Balla; Jill W. Verlander; Deepak Darshan; Lukas C. Kühn; Anupam Agarwal

Ferritin plays a central role in iron metabolism and is made of 24 subunits of 2 types: heavy chain and light chain. The ferritin heavy chain (FtH) has ferroxidase activity that is required for iron incorporation and limiting toxicity. The purpose of this study was to investigate the role of FtH in acute kidney injury (AKI) and renal iron handling by using proximal tubule-specific FtH-knockout mice (FtH(PT-/-) mice). FtH(PT-/-) mice had significant mortality, worse structural and functional renal injury, and increased levels of apoptosis in rhabdomyolysis and cisplatin-induced AKI, despite significantly higher expression of heme oxygenase-1, an antioxidant and cytoprotective enzyme. While expression of divalent metal transporter-1 was unaffected, expression of ferroportin (FPN) was significantly lower under both basal and rhabdomyolysis-induced AKI in FtH(PT-/-) mice. Apical localization of FPN was disrupted after AKI to a diffuse cytosolic and basolateral pattern. FtH, regardless of iron content and ferroxidase activity, induced FPN. Interestingly, urinary levels of the iron acceptor proteins neutrophil gelatinase-associated lipocalin, hemopexin, and transferrin were increased in FtH(PT-/-) mice after AKI. These results underscore the protective role of FtH and reveal the critical role of proximal tubule FtH in iron trafficking in AKI.


Hepatology | 2006

Deoxyribonuclease 1 aggravates acetaminophen-induced liver necrosis in male CD-1 mice

Markus Napirei; Alexei G. Basnakian; Eugene O. Apostolov; Hans Georg Mannherz

An overdose of acetaminophen (APAP) (N‐acetyl‐p‐aminophenol) leads to hepatocellular necrosis induced by its metabolite N‐acetyl‐p‐benzoquinone‐imine, which is generated during the metabolic phase of liver intoxication. It has been reported that DNA damage occurs during the toxic phase; however, the nucleases responsible for this effect are unknown. In this study, we analyzed the participation of the hepatic endonuclease deoxyribonuclease 1 (DNASE1) during APAP‐induced hepatotoxicity by employing a Dnase1 knockout (KO) mouse model. Male CD‐1 Dnase1 wild‐type (WT) (Dnase1+/+) and KO (Dnase1−/−) mice were treated with 2 different doses of APAP. Hepatic histopathology was performed, and biochemical parameters for APAP metabolism and necrosis were investigated, including depletion of glutathione/glutathione‐disulfide (GSH+GSSG), β‐nicotinamide adenine dinucleotide (NADH+NAD+), and adenosine triphosphate (ATP); release of aminotransferases and Dnase1; and occurrence of DNA fragmentation. As expected, an APAP overdose in WT mice led to massive hepatocellular necrosis characterized by the release of aminotransferases and depletion of hepatocellular GSH+GSSG, NADH+NAD+, and ATP. These metabolic events were accompanied by extensive DNA degradation. In contrast, Dnase1 KO mice were considerably less affected. In conclusion, whereas the innermost pericentral hepatocytes of both mouse strains underwent necrosis to the same extent independent of DNA damage, the progression of necrosis to more outwardly located cells was dependent on DNA damage and only occurred in WT mice. Dnase1 aggravates APAP‐induced liver necrosis. (HEPATOLOGY 2006;43:297–305.)


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Effects of long-term ethanol administration in a rat total enteral nutrition model of alcoholic liver disease

Martin J. J. Ronis; Leah Hennings; Ben Stewart; Alexei G. Basnakian; Eugene O. Apostolov; Emanuele Albano; Thomas M. Badger; Dennis R. Petersen

Male Sprague-Dawley rats were chronically fed a high-unsaturated-fat diet for 130 days by using total enteral nutrition (TEN), or the same diet in which ethanol (EtOH) isocalorically replaced carbohydrate calories. Additional groups were supplemented with the antioxidant N-acetylcysteine (NAC) at 1.7 g·kg(-1)·day(-1). Relative to an ad libitum chow-fed group, the high-fat-fed controls had three- to fourfold greater expression of fatty acid transporter CD36 mRNA and developed mild steatosis but little other hepatic pathology. NAC treatment resulted in increased somatic growth relative to controls (4.0 ± 0.1 vs. 3.1 ± 0.1 g/day) and increased hepatic steatosis score (3.5 ± 0.6 vs. 2.7 ± 1.2), associated with suppression of the triglyceride hydrolyzing protein adiponutrin, but produced no elevation in serum alanine aminotransferase (ALT). Chronic EtOH treatment increased expression of fatty acid transport protein FATP-2 mRNA twofold, resulting in marked hepatic steatosis, oxidative stress, and a twofold elevation in serum ALT. However, no changes in tumor necrosis factor-α or transforming growth factor-β expression were observed. Fibrosis, as measured by Massons trichrome and picrosirius red staining, and a twofold increase in expression of type I and type III collagen mRNA, was only observed after EtOH treatment. Long-term EtOH treatment increased hepatocyte proliferation but did not modify the hepatic mRNAs for hedgehog pathway ligands or target genes or genes regulating epithelial-to-mesenchymal transition. Although the effects of NAC on EtOH-induced fibrosis could not be fully evaluated, NAC had additive effects on hepatocyte proliferation and prevented EtOH-induced oxidative stress and necrosis, despite a failure to reverse hepatic steatosis.


Journal of The American Society of Nephrology | 2007

Induction of Renal Endonuclease G by Cisplatin Is Reduced in DNase I-Deficient Mice

Xiaoyan Yin; Eugene O. Apostolov; Sudhir V. Shah; Xiaoying Wang; Konstantin V. Bogdanov; Timea Buzder; Anna G. Stewart; Alexei G. Basnakian

Nephrotoxicity from the chemotherapeutic drug cisplatin is associated with DNA fragmentation and cell death. We have recently demonstrated that DNase I knockout mice are significantly protected against cisplatin nephrotoxicity, but it is unknown whether the DNA fragmentation that occurs is produced by DNase I or another endonuclease. In this study we assessed the expression of several endonucleases involved in cell death after injection of cisplatin and found that the expression of endonuclease G (EndoG) increased whereas the expression of DNase I decreased almost to zero. Immunostaining showed that some nuclei contained both fragmented DNA and EndoG, suggesting that EndoG may cause DNA fragmentation induced by cisplatin. The increase in expression of EndoG was greater in wild-type mice than in DNase I knockout mice, indicating a potential link between the two endonucleases. In support of such a link, overexpression of DNase I in cultured mouse tubular epithelial cells also induced EndoG. Furthermore, gene silencing of EndoG in vitro provided significant protection against cell death. Taken together, our data suggest that both DNase I and EndoG mediate cisplatin injury to tubular epithelial cells.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Endonuclease G mediates endothelial cell death induced by carbamylated LDL

Eugene O. Apostolov; Debarti Ray; Wilson M. Alobuia; Marina V. Mikhailova; Xiaoying Wang; Alexei G. Basnakian; Sudhir V. Shah

End-stage kidney disease is a terminal stage of chronic kidney disease, which is associated with a high incidence of cardiovascular disease. Cardiovascular disease frequently results from endothelial injury caused by carbamylated LDL (cLDL), the product of LDL modification by urea-derived cyanate. Our previous data suggested that cLDL induces mitogen-activated protein kinase-dependent mitotic DNA fragmentation and cell death. However, the mechanism of this pathway is unknown. The current study demonstrated that cLDL-induced endothelial mitotic cell death is independent of caspase-3. The expression of endonuclease G (EndoG), the nuclease implicated in caspase-independent DNA fragmentation, was significantly increased in response to cLDL exposure to the cells. The inhibition of EndoG by RNAi protected cLDL-induced DNA fragmentation, whereas the overexpression of EndoG induced more DNA fragmentation in endothelial cells. Ex vivo experiments with primary endothelial cells isolated from wild-type (WT) and EndoG knockout (KO) mice demonstrated that EndoG KO cells are partially protected against cLDL toxicity compared with WT cells. To determine cLDL toxicity in vivo, we administered cLDL or native LDL (nLDL) intravenously to the WT and EndoG KO mice and then measured floating endothelial cells in blood using flow cytometry. The results showed an increased number of floating endothelial cells after cLDL versus nLDL injection in WT mice but not in EndoG KO mice. Finally, the inhibitors of MEK-ERK1/2 and JNK-c-jun pathways decreased cLDL-induced EndoG overexpression and DNA fragmentation. In summary, our data suggest that cLDL-induced endothelial toxicity is caspase independent and results from EndoG-dependent DNA fragmentation.


DNA and Cell Biology | 2015

Regulation of Apoptotic Endonucleases by EndoG

D. D. Zhdanov; Tariq Fahmi; Xiaoying Wang; Eugene O. Apostolov; Sokolov Nn; Sabzali Javadov; Alexei G. Basnakian

Cells contain several apoptotic endonucleases, which appear to act simultaneously before and after cell death by destroying the host cell DNA. It is largely unknown how the endonucleases are being induced and whether they can regulate each other. This study was performed to determine whether apoptotic mitochondrial endonuclease G (EndoG) can regulate expression of other apoptotic endonucleases. The study showed that overexpression of mature EndoG in kidney tubular epithelial NRK-52E cells can increase expression of caspase-activated DNase (CAD) and four endonucleases that belong to DNase I group including DNase I, DNase X, DNase IL2, and DNase γ, but not endonucleases of the DNase 2 group. The induction of DNase I-type endonucleases was associated with DNA degradation in promoter/exon 1 regions of the endonuclease genes. These results together with findings on colocalization of immunostained endonucleases and TUNEL suggest that DNA fragmentation after EndoG overexpression was caused by DNase I endonucleases and CAD in addition to EndoG itself. Overall, these data provide first evidence for the existence of the integral network of apoptotic endonucleases regulated by EndoG.

Collaboration


Dive into the Eugene O. Apostolov's collaboration.

Top Co-Authors

Avatar

Alexei G. Basnakian

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sudhir V. Shah

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoying Wang

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyan Yin

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Alena Savenka

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Tariq Fahmi

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna G. Stewart

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Dae Song Jang

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Narsimha Reddy Penthala

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge