Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene Tan is active.

Publication


Featured researches published by Eugene Tan.


Journal of Forensic Sciences | 2009

Fast multiplexed polymerase chain reaction for conventional and microfluidic short tandem repeat analysis.

Heidi Giese; Roger Lam; Richard Selden; Eugene Tan

Abstract:  The time required for short tandem repeat (STR) amplification is determined by the temperature ramp rates of the thermal cycler, the components of the reaction mix, and the properties of the reaction vessel. Multiplex amplifications in microfluidic biochip‐based and conventional tube‐based thermal cyclers have been demonstrated in 17.3 and 19 min, respectively. Optimized 28‐cycle amplification protocols generated alleles with signal strengths above calling thresholds, heterozygous peak height ratios of greater than 0.65, and incomplete nontemplate nucleotide addition and stutter of less than 15%. Full CODIS‐compatible profiles were generated using the Profiler Plus ID, COfiler and Identifiler primer sets. PCR performance over a wide range of DNA template levels from 0.006 to 4 ng was characterized by separation and detection on a microfluidic electrophoresis system, Genebench‐FX™. The fast multiplex PCR approach has the potential to reduce process time and cost for STR analysis and enables development of a fully integrated microfluidic forensic DNA analysis system.


PLOS ONE | 2010

Rapid multi-locus sequence typing using microfluidic biochips.

Timothy D. Read; Rosemary S. Turingan; Christopher Cook; Heidi Giese; Ulrich Hans Thomann; Catherine Hogan; Eugene Tan; Richard F. Selden

Background Multiple locus sequence typing (MLST) has become a central genotyping strategy for analysis of bacterial populations. The scheme involves de novo sequencing of 6–8 housekeeping loci to assign unique sequence types. In this work we adapted MLST to a rapid microfluidics platform in order to enhance speed and reduce laboratory labor time. Methodology/Principal Findings Using two integrated microfluidic devices, DNA was purified from 100 Bacillus cereus soil isolates, used as a template for multiplex amplification of 7 loci and sequenced on forward and reverse strands. The time on instrument from loading genomic DNA to generation of electropherograms was only 1.5 hours. We obtained full-length sequence of all seven MLST alleles from 84 representing 46 different Sequence Types. At least one allele could be sequenced from a further 15 strains. The nucleotide diversity of B. cereus isolated in this study from one location in Rockville, Maryland (0.04 substitutions per site) was found to be as great as the global collection of isolates. Conclusions/Significance Biogeographical investigation of pathogens is only one of a panoply of possible applications of microfluidics based MLST; others include microbiologic forensics, biothreat identification, and rapid characterization of human clinical samples.


PLOS ONE | 2013

Rapid Focused Sequencing: A Multiplexed Assay for Simultaneous Detection and Strain Typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis

Rosemary S. Turingan; Hans-Ulrich Thomann; Anna Zolotova; Eugene Tan; Richard F. Selden

Background The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. Methodology/Principal Findings We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed “Rapid Focused Sequencing,” allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. Conclusions/Significance The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental background strains. The assays may be extended to detect a large number of pathogens, are applicable to the evaluation of both environmental and clinical samples, and have the potential to be applied in military, public health, and clinical diagnostic settings.


PLOS ONE | 2012

A Multiplexed Microfluidic PCR Assay for Sensitive and Specific Point-of-Care Detection of Chlamydia trachomatis

Deborah Dean; Rosemary S. Turingan; Hans-Ulrich Thomann; Anna Zolotova; James Rothschild; Sandeep J. Joseph; Timothy D. Read; Eugene Tan; Richard F. Selden

Background Chlamydia trachomatis (Ct) is the most common cause of bacterial sexually transmitted diseases (STD) worldwide. While commercial nucleic acid amplification tests (NAAT) are available for Ct, none are rapid or inexpensive enough to be used at the point-of-care (POC). Towards the first Ct POC NAAT, we developed a microfluidic assay that simultaneously interrogates nine Ct loci in 20 minutes. Methodology and Principal Findings Endocervical samples were selected from 263 women at high risk for Ct STDs (∼35% prevalence). A head-to-head comparison was performed with the Roche-Amplicor NAAT. 129 (49.0%) and 88 (33.5%) samples were positive by multiplex and Amplicor assays, respectively. Sequencing resolved 71 discrepant samples, confirming 53 of 53 positive multiplex samples and 12 of 18 positive Amplicor samples. The sensitivity and specificity were 91.5% and 100%, and 62.4% and 95.9%, respectively, for multiplex and Amplicor assays. Positive and negative predictive values were 100% and 91%, and 94.1% and 68.6%, respectively. Conclusions This is the first rapid multiplex approach to Ct detection, and the assay was also found to be superior to a commercial NAAT. In effect, nine simultaneous reactions significantly increased sensitivity and specificity. Our assay can potentially increase Ct detection in globally diverse clinical settings at the POC.


Investigative Genetics | 2016

Rapid DNA analysis for automated processing and interpretation of low DNA content samples.

Rosemary S. Turingan; Sameer Vasantgadkar; Luke Palombo; Catherine Hogan; Hua Jiang; Eugene Tan; Richard F. Selden

BackgroundShort tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time.ResultsA Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1–15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis.ConclusionsThe LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample types that can be processed and minimizes the time between sample collection, sample processing and analysis, and generation of actionable intelligence. The fully integrated Expert System is capable of interpreting a wide range or sample types and input DNA quantities, allowing samples to be processed and interpreted without a technical operator.


Forensic Science International-genetics | 2016

Developmental validation of the DNAscan™ Rapid DNA Analysis™ instrument and expert system for reference sample processing.

Angelo Della Manna; Jeffrey V. Nye; Christopher Carney; Jennifer S. Hammons; Michael Mann; Farida Al Shamali; Peter M. Vallone; Erica L. Romsos; Beth Ann Marne; Eugene Tan; Rosemary S. Turingan; Catherine Hogan; Richard F. Selden; Julie L. French

Since the implementation of forensic DNA typing in labs more than 20 years ago, the analysis procedures and data interpretation have always been conducted in a laboratory by highly trained and qualified scientific personnel. Rapid DNA technology has the potential to expand testing capabilities within forensic laboratories and to allow forensic STR analysis to be performed outside the physical boundaries of the traditional laboratory. The developmental validation of the DNAscan/ANDE Rapid DNA Analysis System was completed using a BioChipSet™ Cassette consumable designed for high DNA content samples, such as single source buccal swabs. A total of eight laboratories participated in the testing which totaled over 2300 swabs, and included nearly 1400 unique individuals. The goal of this extensive study was to obtain, document, analyze, and assess DNAscan and its internal Expert System to reliably genotype reference samples in a manner compliant with the FBIs Quality Assurance Standards (QAS) and the NDIS Operational Procedures. The DNAscan System provided high quality, concordant results for reference buccal swabs, including automated data analysis with an integrated Expert System. Seven external laboratories and NetBio, the developer of the technology, participated in the validation testing demonstrating the reproducibility and reliability of the system and its successful use in a variety of settings by numerous operators. The DNAscan System demonstrated limited cross reactivity with other species, was resilient in the presence of numerous inhibitors, and provided reproducible results for both buccal and purified DNA samples with sensitivity at a level appropriate for buccal swabs. The precision and resolution of the system met industry standards for detection of micro-variants and displayed single base resolution. PCR-based studies provided confidence that the system was robust and that the amplification reaction had been optimized to provide high quality results. The DNAscan integrated Expert System was examined as part of the Developmental Validation and successfully interpreted the over 2000 samples tested with over 99.998% concordant alleles. The system appropriately flagged samples for human review and failed both mixed samples and samples with insufficient genetic information. These results demonstrated the integrated Expert System makes correct allele calls without human intervention.


Journal of Forensic Sciences | 2013

A 27‐Locus STR Assay to Meet All United States and European Law Enforcement Agency Standards,

James W. Schumm; Cristina Gutierrez‐Mateo; Eugene Tan; Richard F. Selden

Different national and international agencies have selected specific STR sets for forensic database use. To enhance database comparison across national and international borders, a 27‐locus multiplex system was developed comprising all 15 STR loci of the European standard set, the current 13 STR loci of the CODIS core, the proposed 22 STR loci of the expanded CODIS core, 4 additional commonly used STR loci, and the amelogenin locus. Development required iterative primer design to resolve primer‐related artifacts, amplicon sizing, and locus‐to‐locus balance issues. The 19.5‐min assay incorporated newly developed six‐dye chemistry analyzed using a novel microfluidic electrophoresis instrument capable of simultaneous detection and discrimination of 8 or more fluorescent dyes. The 27‐locus multiplex offers the potential for a new international STR standard permitting laboratories in any jurisdiction to use a single reaction to determine profiles for loci they typically generate plus an expanded common STR profiling set of global interest.


International Journal of Legal Medicine | 2017

FlexPlex27—highly multiplexed rapid DNA identification for law enforcement, kinship, and military applications

Ranjana Grover; Hua Jiang; Rosemary S. Turingan; Julie L. French; Eugene Tan; Richard F. Selden

Rapid DNA identification is the use of a rugged, field-deployable system to generate short tandem repeat (STR) profiles in law enforcement, military, immigration, and homeland security applications. A performance verification study was conducted on the ANDE Rapid DNA identification system using FlexPlex27, a highly multiplexed, 27 locus assay that generates data for the expanded CODIS core loci and all additional STR loci required for international databasing. The assay contains 23 autosomal loci (D1S1656, D2S1338, D2S441, D3S1358, D5S81, D6S1043, D7S820, D8S1179, D10S1248, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, D22S1045, FGA, CSF1PO, Penta E, TH01, vWA, TPOX, and SE33), three Y-chromosomal loci (DYS391, DYS576, and DYS570), and Amelogenin. Study results demonstrate that the instrument is reliable, reproducible, accurate, robust, and ready for a large scale, comprehensive developmental validation by NDIS-participating laboratories. The additional loci in the FlexPlex assay allow for improved STR profile sharing globally, increase the power of discrimination for identification matches, and improve the effectiveness of kinship analyses.


PLOS ONE | 2017

Rapid detection and strain typing of Chlamydia trachomatis using a highly multiplexed microfluidic PCR assay

Rosemary S. Turingan; Ludmila Kaplun; Greice Krautz-Peterson; Sarah Norsworthy; Anna Zolotova; Sandeep J. Joseph; Timothy D. Read; Deborah Dean; Eugene Tan; Richard F. Selden

Nucleic acid amplification tests (NAATs) are recommended by the CDC for detection of Chlamydia trachomatis (Ct) urogenital infections. Current commercial NAATs require technical expertise and sophisticated laboratory infrastructure, are time-consuming and expensive, and do not differentiate the lymphogranuloma venereum (LGV) strains that require a longer duration of treatment than non-LGV strains. The multiplexed microfluidic PCR-based assay presented in this work simultaneously interrogates 13 loci to detect Ct and identify LGV and non-LGV strain-types. Based on amplified fragment length polymorphisms, the assay differentiates LGV, ocular, urogenital, and proctocolitis clades, and also serovars L1, L2, and L3 within the LGV group. The assay was evaluated in a blinded fashion using 95 clinical swabs, with 76 previously reported as urogenital Ct-positive samples and typed by ompA genotyping and/or Multi-Locus Sequence Typing. Results of the 13-plex assay showed that 51 samples fell within urogenital clade 2 or 4, 24 samples showed both clade 2 and 4 signatures, indicating possible mixed infection, gene rearrangement, or inter-clade recombination, and one sample was a noninvasive trachoma biovar (either a clade 3 or 4). The remaining 19 blinded samples were correctly identified as LGV clade 1 (3), ocular clade 3 (4), or as negatives (12). To date, no NAAT assay can provide a point-of-care applicable turnaround time for Ct detection while identifying clinically significant Ct strain types to inform appropriate treatment. Coupled with rapid DNA processing of clinical swabs (approximately 60 minutes from swab-in to result-out), the assay has significant potential as a rapid POC diagnostic for Ct infections.


Laboratory techniques in biochemistry and molecular biology | 2010

Nucleic Acid Purification

Richard F. Selden; Eugene Tan

Collaboration


Dive into the Eugene Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah Dean

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Cook

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Erica L. Romsos

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

James Rothschild

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge