Eugene V. Sheval
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eugene V. Sheval.
Journal of Cellular and Molecular Medicine | 2008
E. Y. Plotnikov; T. G. Khryapenkova; A. K. Vasileva; M. V. Marey; Svetlana I. Galkina; N. K. Isaev; Eugene V. Sheval; Vladimir Y. Polyakov; G. T. Sukhikh; Dmitry B. Zorov
The goals of the study were: (1) to explore the communication between human mesenchymal stem cells (MSC) and rat cardiac myocytes resulting in differentiation of the stem cells and, (2) to evaluate the role of mitochondria in it. Light and fluorescence microscopy as well as scanning electron microscopy revealed that after co‐cultivation, cells formed intercellular contacts and transient exchange with cytosolic elements could be observed. The transport of cytosolic entity had no specific direction. Noticeably, mitochondria also could be transferred to the recipient cells in a unidirectional fashion (towards cardiomyocytes only). Transmission electron microscopy revealed significant variability in both the diameter of intercellular contacting tubes and their shape. Inside of these nanotubes mitochondria‐resembling structures were identified. Moreover, after co‐cultivation with cardiomyocytes, expression of human‐specific myosin was revealed in MSC. Thus, we speculate that: (1) transport of intracellular elements to MSC possibly can determine the direction of their differentiation and, (2) mitochondria may be involved in the mechanism of the stem cell differentiation. It looks plausible that mitochondrial transfer to recipient cardiomyocytes may be involved in the mechanism of failed myocardium repair after stem cells transplantation.
Journal of Virology | 2006
Peter V. Lidsky; Stanleyson V. Hato; Maryana V. Bardina; A. G. Aminev; Ann C. Palmenberg; Eugene V. Sheval; Vladimir Y. Polyakov; F.J.M. van Kuppeveld; Vadim I. Agol
ABSTRACT Some picornaviruses, for example, poliovirus, increase bidirectional permeability of the nuclear envelope and suppress active nucleocytoplasmic transport. These activities require the viral protease 2Apro. Here, we studied nucleocytoplasmic traffic in cells infected with encephalomyocarditis virus (EMCV; a cardiovirus), which lacks the poliovirus 2Apro-related protein. EMCV similarly enhanced bidirectional nucleocytoplasmic traffic. By using the fluorescent “Timer” protein, which contains a nuclear localization signal, we showed that the cytoplasmic accumulation of nuclear proteins in infected cells was largely due to the nuclear efflux of “old” proteins rather than impaired active nuclear import of newly synthesized molecules. The nuclear envelope of digitonin-treated EMCV-infected cells permitted rapid efflux of a nuclear marker protein. Inhibitors of poliovirus 2Apro did not prevent the EMCV-induced efflux. Extracts from EMCV-infected cells and products of in vitro translation of viral RNAs contained an activity increasing permeability of the nuclear envelope of uninfected cells. This activity depended on the expression of the viral leader protein. Mutations disrupting the zinc finger motif of this protein abolished its efflux-inducing ability. Inactivation of the L protein phosphorylation site (Thr47→Ala) resulted in a delayed efflux, while a phosphorylation-mimicking (Thr47→Asp) replacement did not significantly impair the efflux-inducing ability. Such activity of extracts from EMCV-infected cells was suppressed by the protein kinase inhibitor staurosporine. As evidenced by electron microscopy, cardiovirus infection resulted in alteration of the nuclear pores, but it did not trigger degradation of the nucleoporins known to be degraded in the poliovirus-infected cells. Thus, two groups of picornaviruses, enteroviruses and cardioviruses, similarly alter the nucleocytoplasmic traffic but achieve this by strikingly different mechanisms.
Journal of Virology | 2009
Maryana V. Bardina; Peter V. Lidsky; Eugene V. Sheval; Ksenia V. Fominykh; Frank J. M. van Kuppeveld; Vladimir Y. Polyakov; Vadim I. Agol
ABSTRACT Representatives of several picornavirus genera have been shown previously to significantly enhance noncontrollable bidirectional exchange of proteins between nuclei and cytoplasm. In enteroviruses and rhinoviruses, enhanced permeabilization of the nuclear pores appears to be primarily due to proteolytic degradation of some nucleoporins (protein components of the pore), whereas this effect in cardiovirus-infected cells is triggered by the leader (L) protein, devoid of any enzymatic activities. Here, we present evidence that expression of L alone was sufficient to cause permeabilization of the nuclear envelope in HeLa cells. In contrast to poliovirus, mengovirus infection of these cells did not elicit loss of nucleoporins Nup62 and Nup153 from the nuclear pore complex. Instead, nuclear envelope permeabilization was accompanied by hyperphosphorylation of Nup62 in cells infected with wild-type mengovirus, whereas both of these alterations were suppressed in L-deficient virus mutants. Since phosphorylation of Nup62 (although less prominent) did accompany permeabilization of the nuclear envelope prior to its mitotic disassembly in uninfected cells, we hypothesize that cardiovirus L alters the nucleocytoplasmic traffic by hijacking some components of the normal cell division machinery. The variability and biological significance of picornaviral interactions with the nucleocytoplasmic transport in the infected cells are discussed.
Journal of Virology | 2009
Lyudmila I. Romanova; Peter V. Lidsky; Marina S. Kolesnikova; Ksenia V. Fominykh; Anatoly P. Gmyl; Eugene V. Sheval; Stanleyson V. Hato; Frank J. M. van Kuppeveld; Vadim I. Agol
ABSTRACT Apoptosis is a common antiviral defensive mechanism that potentially limits viral reproduction and spread. Many viruses possess apoptosis-suppressing tools. Here, we show that the productive infection of HeLa cells with encephalomyocarditis virus (a cardiovirus) was not accompanied by full-fledged apoptosis (although the activation of caspases was detected late in infection) but rather elicited a strong antiapoptotic state, as evidenced by the resistance of infected cells to viral and nonviral apoptosis inducers. The development of the antiapoptotic state appeared to depend on a function(s) of the viral leader (L) protein, since its mutational inactivation resulted in the efflux of cytochrome c from mitochondria, the early activation of caspases, and the appearance of morphological and biochemical signs of apoptosis in a significant proportion of infected cells. Infection with both wild-type and L-deficient viruses induced the fragmentation of mitochondria, which in the former case was not accompanied with cytochrome c efflux. Although the exact nature of the antiapoptotic function(s) of cardioviruses remains obscure, our results suggested that it includes previously undescribed mechanisms operating upstream and possibly downstream of the mitochondrial level, and that L is involved in the control of these mechanisms. We propose that cardiovirus L belongs to a class of viral proteins, dubbed here security proteins, whose roles consist solely, or largely, in counteracting host antidefenses. Unrelated L proteins of other picornaviruses as well as their highly variable 2A proteins also may be security proteins. These proteins appear to be independent acquisitions in the evolution of picornaviruses, implying multiple cases of functional (though not structural) convergence.
Cell Biology International | 2006
Eugene V. Sheval; Vladimir Y. Polyakov
A novel extraction protocol for cells cultured on coverslips is described. Observations of the extraction process in a perfusion chamber reveal that cells of all mitotic stages are not detached from coverslips during extraction, and all stages can be recognized using phase contrast images. We studied the extracted cell morphology and distribution of a major scaffold component—topoisomerase IIα, in extracted metaphase and anaphase cells. An extraction using 2 M NaCl leads to destruction of chromosomes at the light microscope level. Immunogold studies demonstrate that the only residual structure observed is an axial chromosome scaffold that contains topoisomerase IIα. In contrast, mitotic chromosomes are swelled only partially after an extraction using dextran sulphate and heparin, and it appears that this treatment does not lead to total destruction of loop domains. In this case, the chromosome scaffold and numerous structures resembling small rosettes are revealed inside extracted cells. The rosettes observed condense after addition of Mg2+‐ions and do not contain topoisomerase IIα suggesting that these structures correspond to intermediates of loop domain compaction. We propose a model of chromosome structure in which the loop domains are condensed into highly regular structures with rosette organization.
Biochimica et Biophysica Acta | 2011
Yana R. Musinova; Olga M. Lisitsyna; S. A. Golyshev; Alexander I. Tuzhikov; Vladimir Y. Polyakov; Eugene V. Sheval
The majority of known nuclear proteins are highly mobile. The molecular mechanisms by which they accumulate inside stable compartments that are not separated from the nucleoplasm by membranes are obscure. The compartmental retention of some proteins is associated with their biological function; however, some protein interactions within distinct nuclear structures may be non-specific. The non-specific retention may lead to the accumulation of proteins in distinct structural domains, even if the protein does not function inside this domain. In this study, we have shown that histone H2B-EGFP initially accumulated in the nucleolus after ectopic expression, and then gradually incorporated into the chromatin to leave only a small amount of nucleolus-bound histone that was revealed by removing chromatin-bound proteins with DNase I treatment. Nucleolar histone H2B had several characteristics: (i) it preferentially bound to granular component of the nucleolus and interacted with RNA or RNA-containing nucleolar components; (ii) it freely exchanged between the nucleolus and nucleoplasm; (iii) it associated with the nuclear matrix; and (iv) it bound to interphase prenuclear bodies that formed after hypotonic treatment. The region in histone H2B that acts as a nucleolar localization/retention signal (NoRS) was identified. This signal overlapped with a nuclear localization signal (NLS), which appears to be the primary function of this region. The NoRS activity of this region was non-specific, but the molecular mechanism was probably similar to the NoRSs of other nucleolar proteins. All known NoRSs are enriched with basic amino acids, and we demonstrated that positively charged motifs (nona-arginine (R9) and nona-lysine (K9)) were sufficient for the nucleolar accumulation of EGFP. Also, the correlation between measured NoRS activity and the predicted charge was observed. Thus, NoRSs appear to achieve their function through electrostatic interactions with the negatively charged components of the nucleolus. Though these interactions are non-specific, the functionally unrelated retention of a protein can increase the probability of its interaction with specific and functionally related binding sites.
European Journal of Histochemistry | 2005
Eugene V. Sheval; M. A. Polzikov; M. O. J. Olson; O. V. Zatsepina
Transient transfection of HeLa cells with a plasmid encoding the full-length human fibrillarin fused to a green fluorescent protein (GFP) resulted in two major patterns of intensity of the nucleolar labeling for the chimeric protein: weak and strong. Both patterns were maintained in fibrillarin-GFP expressing cells after fixation with formaldehyde. When the fixed fibrillarin-GFP expressing cells were used for immunolabeling with antibodies to fibrillarin, only the nucleoli with a weak GFP-signal became strongly labeled, whereas those with the heavy signals were only lightly stained, if at all. A similar pattern was observed if the cells were immunolabeled with antibodies to GFP. These observations suggest that an increase in antigen accumulation within the nucleolus, which could take place under various physiological or experimental conditions, could prevent the antigen from being recognized by specific antibodies. These results have implications regarding contradictory data on localization of various nucleolar antigens obtained by conventional immunocytochemistry.
Journal of Electron Microscopy | 2011
Ekaterina G. Volkova; Svetlana Yu. Kurchashova; Vladimir Y. Polyakov; Eugene V. Sheval
The mechanisms by which the supramolecular order is formed inside the cell nucleus remain poorly understood. So far, two major hypotheses - ordered assembly and stochastic self-organization - have been discussed. To determine which mechanism is responsible for the formation of nuclear envelope, cells overexpressing one of the nuclear envelope proteins (lamin A, lamin B1, pom121 or ndc1) were investigated. According to the ordered assembly model, the presence of an excessive amount of a component has no effect in the formation of the normal structure of a nuclear envelope because it is programmed and cannot be distorted. In contrast, according to the self-organization concept, there is no such strictly determined cellular structures, and an excessive amount of even one component will affect the cellular organization. In the present study, formation of a redundant nuclear envelope was observed in the case of lamin B1 and lamin A overexpression. In the case of the nucleoporins pom121 and ndc1, no incorporation of the overexpressed proteins into the nuclear envelope was observed on the first day after transfection; however, the remodeling of endoplasmic reticulum elements and the formation of membrane aggregates in the cytoplasm were observed. After mitosis, pom121 from the cytoplasmic aggregates was translocated into the redundant nuclear envelope in which it induced inner nuclear membrane protrusions. Therefore, our results indicate that the formation of the nuclear envelope is not predetermined and that an excessive amount of even one protein component can affect cellular structure formation. This study concluded that nuclear envelope formation is achieved by the self-organization mechanism.
Virology | 2010
Olga Y. Frolova; Igor V. Petrunia; Tatiana V. Komarova; Vyacheslav S. Kosorukov; Eugene V. Sheval; Yuri Gleba; Yuri L. Dorokhov
Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.
Colloids and Surfaces B: Biointerfaces | 2017
Subhra Jana; Anastasiya V. Kondakova; Svetlana N. Shevchenko; Eugene V. Sheval; Kirill A. Gonchar; Victor Yu. Timoshenko; A. N. Vasiliev
Halloysite nanotubes (HNTs) with immobilized silver (Ag) nanoparticles (NPs) were prepared by methods of wet chemistry and were characterized by using the transmission electron microscopy, x-ray diffraction, optical spectroscopy and experiments with E. coli bacteria in-vitro. It was found that Ag NPs with almost perfect crystalline structure and sizes from ∼9nm were mainly attached over the external surface of HNTs. The optical absorption measurement revealed a broad plasmonic resonance in the region of 400-600nm for HNTs with Ag NPs. The later samples exhibit bactericidal effect, which is more pronounced under illumination. A role of the plasmonic excitation of Ag NPs for their bioactive properties is discussed. The obtained results show that Ag NPs-decorated HNTs are promising agents for the antibacterial treatment.