Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene Wong is active.

Publication


Featured researches published by Eugene Wong.


International Journal of Radiation Oncology Biology Physics | 2002

Intensity-modulated arc therapy simplified

Eugene Wong; Jeff Chen; Jonathan Greenland

PURPOSE We present a treatment planning strategy for intensity-modulated radiation therapy using gantry arcs with dynamic multileaf collimator, previously termed intensity-modulated arc therapy (IMAT). METHODS AND MATERIALS The planning strategy is an extension of the photon bar arc and asymmetric arc techniques and is classified into three levels of complexity, with increasing number of gantry arcs. This principle allows us to generalize the analysis of the number of arcs required for intensity modulation for a given treatment site. Using a phantom, we illustrate how the current technique is more flexible than the photon bar arc technique. We then compare plans from our strategy with conventional three-dimensional conformal treatment plans for three sites: prostate (prostate plus seminal vesicles), posterior pharyngeal wall, and chest wall. RESULTS Our strategy generates superior IMAT treatment plans compared to conventional three-dimensional conformal plans. The IMAT plans spare critical organs well, and the trade-off for simplicity is that the dose uniformity in the target volume may not rival that of true inverse treatment plans. CONCLUSIONS The analyses presented in this paper give a better understanding of IMAT plans. Our strategy is easier to understand and more efficient in generating plans than inverse planning systems; our plans are also simpler to modify, and quality assurance is more intuitive.


Medical Physics | 2010

Intensity modulated radiotherapy of non-small-cell lung cancer incorporating SPECT ventilation imaging.

Iram Munawar; B. Yaremko; J Craig; Michael Oliver; S. Gaede; George Rodrigues; Edward Yu; Robert Reid; Eugene Leung; Jean-Luc Urbain; Jeff Chen; Eugene Wong

PURPOSE The authors performed this retrospective study to investigate the impact of using ventilation scans obtained from single photon emission computed tomography (SPECT) in selecting beam directions in intensity modulated radiation therapy (IMRT) planning in lung cancer radiotherapy to spare dosimetrically well ventilated lung. METHODS For ten consecutive stage III non-small-cell lung cancer patients, the authors obtained both ventilation/perfusion SPECT scans and four-dimensional CT scans for treatment planning purposes. Each ventilation scan was registered with the corresponding planning CT and ventilation volumes corresponding to either > or = 50% (vv50) or > or = 70% (vv70) of the maximum SPECT count were automatically segmented. For each patient, three IMRT plans were generated: One using nine equally spaced beams optimized according to nonfunctional lung based mean lung dose and lung v20; a second using nine equally spaced beams optimized to avoid vv50 and vv70; and a third plan using only three beams with gantry angles chosen based on minimum mean ventilated lung dose calculated for each conformal beam at every 10 degrees gantry angle avoiding vv50 and vv70. Resultant dose volume histogram indices were calculated for each plan and were compared with respect to calculated SPECT-based ventilation parameters in order to quantify the potential utility of ventilation SPECT in this setting. RESULTS Two patient groups were identified based on (i) the overlap volume between PTV and vv50 and (ii) the average angular mean ventilated lung dose (AAMvLD). The first parameter quantifies the proximity of the PTV to well ventilated lung and the second parameter quantifies the degree of ventilation that surrounds the PTV. For group 1 patients, < or = 5% of the vv50 overlapped with the PTV. For group 2 patients, > 5% of the vv50 overlapped the PTV. Group 1 was further classified into subgroups 1A and 1B: For subgroup 1A, AAMvLD is >18 Gy, implying that the functional lung surrounds the PTV; for subgroup 1B, AAMvLD is <18 Gy, implying that the well ventilated lung does not completely surround PTV. For subgroup 1A, the plans generated using ventilated lung avoidance reduced dose to vv50 and vv70, with below tolerance dose to normal lung and acceptable coverage of the PTV. For subgroup 1B, the dose to the total lung and well ventilated lung are reduced with the beam direction optimization for the three-beam plan. For group 2, there was no significant dosimetric advantage of using SPECT-based ventilation information in IMRT plan optimization. CONCLUSIONS In conclusion, it is feasible to use SPECT ventilation scans to optimize IMRT beam direction and, subsequently, to reduce dose to ventilated lung when overlap of the PTV and the ventilated lung is minimal and that the PTV is not surrounded by the ventilated lung. The potential benefit of ventilation SPECT scanning can be determined by preplanning assessment of overlap volumes and the AAMvLD.


Medical Physics | 2003

Comparison of dose calculation algorithms with Monte Carlo methods for photon arcs

J Chow; Eugene Wong; Jeff Chen; Jake Van Dyk

The objective of this study is to seek an accurate and efficient method to calculate the dose distribution of a photon arc. The algorithms tested include Monte Carlo, pencil beam kernel (PK), and collapsed cone convolution (CCC). For the Monte Carlo dose calculation, EGS4/DOSXYZ was used. The SRCXYZ source code associated with the DOSXYZ was modified so that the gantry angle of a photon beam would be sampled uniformly within the arc range about an isocenter to simulate a photon arc. Specifically, photon beams (6/18 MV, 4 x 4 and 10 x 10 cm2) described by a phase space file generated by BEAM (MCPHS), or by two point sources with different photon energy spectra (MCDIV) were used. These methods were used to calculate three-dimensional (3-D) distributions in a PMMA phantom, a cylindrical water phantom, and a phantom with lung inhomogeneity. A commercial treatment planning system was also used to calculate dose distributions in these phantoms using equivalent tissue air ratio (ETAR), PK and CCC algorithms for inhomogeneity corrections. Dose distributions for a photon arc in these phantoms were measured using a RK ion chamber and radiographic films. For homogeneous phantoms, the measured results agreed well (approximately 2% error) with predictions by the Monte Carlo simulations (MCPHS and MCDIV) and the treatment planning system for the 180 degrees and 360 degrees photon arcs. For the dose distribution in the phantom with lung inhomogeneity with a 90 degrees photon arc, the Monte Carlo calculations agreed with the measurements within 2%, while the treatment planning system using ETAR, PK and CCC underestimated or overestimated the dose inside the lung inhomogeneity from 6% to 12%.


Journal of Applied Clinical Medical Physics | 2013

Automated IMRT planning with regional optimization using planning scripts

I Xhaferllari; Eugene Wong; K Bzdusek; M. Lock; Jeff Chen

Intensity‐modulated radiation therapy (IMRT) has become a standard technique in radiation therapy for treating different types of cancers. Various class solutions have been developed for simple cases (e.g., localized prostate, whole breast) to generate IMRT plans efficiently. However, for more complex cases (e.g., head and neck, pelvic nodes), it can be time‐consuming for a planner to generate optimized IMRT plans. To generate optimal plans in these more complex cases which generally have multiple target volumes and organs at risk, it is often required to have additional IMRT optimization structures such as dose limiting ring structures, adjust beam geometry, select inverse planning objectives and associated weights, and additional IMRT objectives to reduce cold and hot spots in the dose distribution. These parameters are generally manually adjusted with a repeated trial and error approach during the optimization process. To improve IMRT planning efficiency in these more complex cases, an iterative method that incorporates some of these adjustment processes automatically in a planning script is designed, implemented, and validated. In particular, regional optimization has been implemented in an iterative way to reduce various hot or cold spots during the optimization process that begins with defining and automatic segmentation of hot and cold spots, introducing new objectives and their relative weights into inverse planning, and turn this into an iterative process with termination criteria. The method has been applied to three clinical sites: prostate with pelvic nodes, head and neck, and anal canal cancers, and has shown to reduce IMRT planning time significantly for clinical applications with improved plan quality. The IMRT planning scripts have been used for more than 500 clinical cases. PACS numbers: 87.55.D, 87.55.de


International Journal of Radiation Oncology Biology Physics | 2011

A Phase II Trial of Arc-Based Hypofractionated Intensity-Modulated Radiotherapy in Localized Prostate Cancer

M. Lock; Lara Best; Eugene Wong; G. Bauman; D. D'Souza; Varagur Venkatesan; Tracy Sexton; Belal Ahmad; Jonathan I. Izawa; George Rodrigues

PURPOSE To evaluate acute and late genitourinary (GU) and gastrointestinal (GI) toxicity and biochemical control of hypofractionated, image-guided (fiducial markers or ultrasound guidance), simplified intensity-modulated arc therapy for localized prostate cancer. METHODS AND MATERIALS This Phase II prospective clinical trial for T1a-2cNXM0 prostate cancer enrolled 66 patients who received 63.2 Gy in 20 fractions over 4 weeks. Fiducial markers were used for image guidance in 30 patients and daily ultrasound for the remainder. Toxicity was scored according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. RESULTS Median follow-up was 36 months. Acute Phase Grade 2 and 3 toxicity was 34% and 9% for GU vs. 25% and 10% for GI symptoms. One Grade 4 acute GI toxicity occurred in a patient with unrecognized Crohns disease. Late Grade 2 and 3 toxicity for GU was 14% and 5%, and GI toxicity was 25% and 3%. One late GI Grade 4 toxicity was observed in a patient with significant comorbidities (anticoagulation, vascular disease). Acute GI toxicity ≥ Grade 2 was shown to be a predictor for late toxicity Grade ≥ 2 (p < 0.001). The biochemical disease-free survival at 3 years was 95%. CONCLUSIONS Hypofractionated simplified intensity-modulated arc therapy radiotherapy given as 63.2 Gy in 20 fractions demonstrated promising biochemical control rates; however, higher rates of acute Grade 3 GU and GI toxicity and higher late Grade 2 GU and GI toxicity were noted. Ongoing randomized controlled trials should ultimately clarify issues regarding patient selection and the true rate of severe toxicity that can be directly attributed to hypofractionated radiotherapy.


Radiotherapy and Oncology | 2014

Mapping metabolic changes associated with early Radiation Induced Lung Injury post conformal radiotherapy using hyperpolarized 13C-pyruvate Magnetic Resonance Spectroscopic Imaging

Kundan Thind; Michael D. Jensen; Elaine M Hegarty; Albert P. Chen; Heeseung Lim; Francisco Martínez-Santiesteban; Jacob Van Dyk; Eugene Wong; Timothy J. Scholl; Giles E. Santyr

PURPOSE Radiation Pneumonitis (RP) limits radiotherapy. Detection of early metabolic changes in the lungs associated with RP may provide an opportunity to adjust treatment before substantial toxicities occur. In this work, regional lactate-to-pyruvate signal ratio (lac/pyr) was quantified in rat lungs and heart following administration of hyperpolarized (13)C-pyruvate magnetic resonance imaging (MRI) at day 5, 10, 15 and 25-post conformal radiotherapy. These results were also compared to histology and blood analyses. METHODS The lower right lungs of 12 Sprague Dawley rats were irradiated in 2 fractions with a total dose of 18.5 Gy using a modified micro-CT system. Regional lactate and pyruvate data were acquired from three irradiated and three age-matched healthy rats at each time point on days 5, 10, 15 and 25-post radiotherapy. Arterial blood was collected from each animal prior to the (13)C-pyruvate injection and was analyzed for blood lactate concentration and arterial oxygen concentration (paO₂). Macrophage count was computed from the histology of all rat lungs. RESULTS A significant increase in lac/pyr was observed in both right and left lungs of the irradiated cohort compared to the healthy cohort for all time points. No increase in lac/pyr was observed in the hearts of the irradiated cohort compared to the hearts of the healthy cohorts. Blood lactate concentration and paO2 did not show a significant change between the irradiated and the healthy cohorts. Macrophage count in both right and left lungs was elevated for the irradiated cohort compared to the healthy cohort. CONCLUSIONS Metabolic changes associated with RP may be mapped as early as five days post conformal radiotherapy. Over the small sample size in each cohort, elevated macrophage count, consistent with early phase of inflammation was highly correlated to increases in lac/pyr in both the irradiated and unirradiated lungs. Further experiments with larger sample size may improve the confidence of this finding.


Medical Physics | 2014

Detection of radiation induced lung injury in rats using dynamic hyperpolarized 129Xe magnetic resonance spectroscopy

Matthew S. Fox; Alexei Ouriadov; Kundan Thind; Elaine Hegarty; Eugene Wong; Andrew Hope; Giles E. Santyr

PURPOSE Radiation induced lung injury (RILI) is a common side effect for patients undergoing thoracic radiation therapy (RT). RILI can lead to temporary or permanent loss of lung function and in extreme cases, death. Combining functional lung imaging information with conventional radiation treatment plans may lead to more desirable treatment plans that reduce lung toxicity and improve the quality of life for lung cancer survivors. Magnetic Resonance Imaging of the lung following inhalation of hyperpolarized(129)Xe may provide a useful nonionizing approach for probing changes in lung function and structure associated with RILI before, during, or after RT (early and late time-points). METHODS In this study, dynamic(129)Xe MR spectroscopy was used to measure whole-lung gas transfer time constants for lung tissue and red blood cells (RBC), respectively (TTr_tissue and TTr_RBC) in groups of rats at two weeks and six weeks following 14 Gy whole-lung exposure to radiation from a (60)Co source. A separate group of six healthy age-matched rats served as a control group. RESULTS TTr_tissue values at two weeks post-irradiation (51.6 ± 6.8 ms) were found to be significantly elevated (p < 0.05) with respect to the healthy control group (37.2 ± 4.8 ms). TTr_RBC did not show any significant changes between groups. TTr_tissue was strongly correlated with TTr_RBC in the control group (r = 0.9601 p < 0.05) and uncorrelated in the irradiated groups. Measurements of arterial partial pressure of oxygen obtained by arterial blood sampling were found to be significantly decreased (p < 0.05) in the two-week group (54.2 ± 12.3 mm Hg) compared to those from a representative control group (85.0 ± 10.0 mm Hg). Histology of a separate group of similarly irradiated animals confirmed the presence of inflammation due to radiation exposure with alveolar wall thicknesses that were significantly different (p < 0.05). At six weeks post-irradiation, TTr_tissue returned to values (35.6 ± 9.6 ms) that were not significantly different from baseline. CONCLUSIONS Whole-lung tissue transfer time constants for(129)Xe (TTr_tissue) can be used to detect the early phase of RILI in a rat model involving 14 Gy thoracic (60)Co exposure as early as two weeks post-irradiation. This knowledge combined with more sophisticated models of gas exchange and imaging techniques, may allow functional lung avoidance radiation therapy planning to be achievable, providing more beneficial treatment plans and improved quality of life for recovering lung cancer patients.


Magnetic Resonance in Medicine | 2013

Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging

Kundan Thind; Albert P. Chen; Lanette Friesen-Waldner; Alexei Ouriadov; Timothy J. Scholl; Matthew S. Fox; Eugene Wong; J. VanDyk; Andrew Hope; Giles E. Santyr

Radiation‐induced lung injury limits radiotherapy of thoracic cancers. Detection of radiation pneumonitis associated with early radiation‐induced lung injury (2–4 weeks postirradiation) may provide an opportunity to adjust treatment, before the onset of acute pneumonitis and/or irreversible fibrosis. In this study, localized magnetic resonance (MR) spectroscopy and imaging of hyperpolarized 13C‐pyruvate (pyruvate) and 13C‐lactate (lactate) were performed in the thorax and kidney regions of rats 2 weeks following whole‐thorax irradiation (14 Gy). Lactate‐to‐pyruvate signal ratio was observed to increase by 110% (P < 0.01), 57% (P < 0.02), and 107% (P < 0.01), respectively, in the thorax, lung, and heart tissues of the radiated rats compared with healthy age‐matched rats. This was consistent with lung inflammation confirmed using cell micrographs of bronchioalveolar lavage specimens and decreases in arterial oxygen partial pressure (paO2), indicative of hypoxia. No statistically significant difference was observed in either lactate‐to‐pyruvate signal ratios in the kidney region (P = 0.50) between the healthy (0.215 ± 0.100) and radiated cohorts (0.215 ± 0.054) or in blood lactate levels (P = 0.69) in the healthy (1.255 ± 0.247 mmol/L) and the radiated cohorts (1.325 ± 0.214 mmol/L), confirming that the injury is localized to the thorax. This work demonstrates the feasibility of hyperpolarized 13C metabolic MR spectroscopy and imaging for detection of early radiation‐induced lung injury. Magn Reson Med 70:601–609, 2013.


Medical Physics | 2007

Segmentation and leaf sequencing for intensity modulated arc therapy

Adam Gladwish; Mike Oliver; J Craig; Jeff Chen; Glenn Bauman; Barbara Fisher; Eugene Wong

A common method in generating intensity modulated radiation therapy (IMRT) plans consists of a three step process: an optimized fluence intensity map (IM) for each beam is generated via inverse planning, this IM is then segmented into discrete levels, and finally, the segmented map is translated into a set of MLC apertures via a leaf sequencing algorithm. To date, limited work has been done on this approach as it pertains to intensity modulated arc therapy (IMAT), specifically in regards to the latter two steps. There are two determining factors that separate IMAT segmentation and leaf sequencing from their IMRT equivalents: (1) the intrinsic 3D nature of the intensity maps (standard 2D maps plus the angular component), and (2) that the dynamic multileaf collimator (MLC) constraints be met using a minimum number of arcs. In this work, we illustrate a technique to create an IMAT plan that replicates Tomotherapy deliveries by applying IMAT specific segmentation and leaf-sequencing algorithms to Tomotherapy output sinograms. We propose and compare two alternative segmentation techniques, a clustering method, and a bottom-up segmentation method (BUS). We also introduce a novel IMAT leaf-sequencing algorithm that explicitly takes leaf movement constraints into consideration. These algorithms were tested with 51 angular projections of the output leaf-open sinograms generated on the Hi-ART II treatment planning system (Tomotherapy Inc.). We present two geometric phantoms and 2 clinical scenarios as sample test cases. In each case 12 IMAT plans were created, ranging from 2 to 7 intensity levels. Half were generated using the BUS segmentation and half with the clustering method. We report on the number of arcs produced as well as differences between Tomotherapy output sinograms and segmented IMAT intensity maps. For each case one plan for each segmentation method is chosen for full Monte Carlo dose calculation (NumeriX LLC) and dose volume histograms (DVH) are calculated. In all cases, the BUS method outperformed the clustering, method. We recommend using the BUS algorithm and discuss potential improvements to the clustering algorithms.


Journal of Medical Imaging and Radiation Oncology | 2014

SPECT‐based functional lung imaging for the prediction of radiation pneumonitis: A clinical and dosimetric correlation

Douglas A. Hoover; Robert H. Reid; Eugene Wong; Larry Stitt; Eric Sabondjian; George Rodrigues; Jasbir Jaswal; Brian Yaremko

When we irradiate lung cancer, the radiation dose that can be delivered safely is limited by the risk of radiation pneumonitis (RP) in the surrounding normal lung. This risk is dose‐dependent and is commonly predicted using metrics such as the V20, which are usually formulated assuming homogeneous pulmonary function. Because in vivo pulmonary function is not homogeneous, if highly functioning lung can be identified beforehand and preferentially avoided during treatment, it might be possible to reduce the risk of RP, suggesting the utility of function‐based prediction metrics.

Collaboration


Dive into the Eugene Wong's collaboration.

Top Co-Authors

Avatar

Jeff Chen

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

George Rodrigues

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Douglas A. Hoover

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Lock

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

David D'Souza

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Glenn Bauman

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

M. Lock

London Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar

Michael D. Jensen

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Ting-Yim Lee

Lawson Health Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge