Eugenia B. Manukhina
University of North Texas Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eugenia B. Manukhina.
Experimental Biology and Medicine | 2006
Eugenia B. Manukhina; H. Fred Downey; Robert T. Mallet
Hypoxia is one of the most frequently encountered stresses in health and disease. The duration, frequency, and severity of hypoxic episodes are critical factors determining whether hypoxia is beneficial or harmful. Adaptation to intermittent hypoxia has been demonstrated to confer cardiovascular protection against more severe and sustained hypoxia, and, moreover, to protect against other stresses, including ischemia. Thus, the direct and cross protective effects of adaptation to intermittent hypoxia have been used for treatment and prevention of a variety of diseases and to increase efficiency of exercise training. Evidence is mounting that nitric oxide (NO) plays a central role in these adaptive mechanisms. NO-dependent protective mechanisms activated by intermittent hypoxia include stimulation of NO synthesis as well as restriction of NO overproduction. In addition, alternative, nonenzymic sources of NO and negative feedback of NO synthesis are important factors in optimizing NO concentrations. The adaptive enhancement of NO synthesis and/or availability activates or increases expression of other protective factors, including heat shock proteins, antioxidants and prostaglandins, making the protection more robust and sustained. Understanding the role of NO in mechanisms of adaptation to hypoxia will support development of therapies to prevent and treat hypoxic or ischemic damage to organs and cells and to increase adaptive capabilities of the organism.
Experimental Biology and Medicine | 2008
Tatiana V. Serebrovskaya; Eugenia B. Manukhina; Michael L. Smith; H. Fred Downey; Robert T. Mallet
During acute episodes of hypoxia, chemoreceptor-mediated sympathetic activity increases heart rate, cardiac output, peripheral resistance and systemic arterial pressure. However, different intermittent hypoxia paradigms produce remarkably divergent effects on systemic arterial pressure in the post-hypoxic steady state. The hypertensive effects of obstructive sleep apnea (OSA) vs. the depressor effects of therapeutic hypoxia exemplify this divergence. OSA, a condition afflicting 15–25% of American men and 5–10% of women, has been implicated in the pathogenesis of systemic hypertension and is a major risk factor for heart disease and stroke. OSA imposes a series of brief, intense episodes of hypoxia and hypercapnia, leading to persistent, maladaptive chemoreflex-mediated activation of the sympathetic nervous system which culminates in hypertension. Conversely, extensive evidence in animals and humans has shown controlled intermittent hypoxia conditioning programs to be safe, efficacious modalities for prevention and treatment of hypertension. This article reviews the pertinent literature in an attempt to reconcile the divergent effects of intermittent hypoxia therapy and obstructive sleep apnea on hypertension. Special emphasis is placed on research conducted in the nations of the former Soviet Union, where intermittent hypoxia conditioning programs are being applied therapeutically to treat hypertension in patients. Also reviewed is evidence regarding mechanisms of the pro- and anti-hypertensive effects of intermittent hypoxia.
FEBS Letters | 1995
I.Yu. Malyshev; Eugenia B. Manukhina; Vasak D. Mikoyan; Lyudmila N. Kubrina; Anatoly F. Vanin
Heat shock potentiated the nitric oxide production (EPR assay) in the liver, kidney, heart, spleen, intestine, and brain. The heat shock‐induced sharp transient increase in the rate of nitric oxide production preceded the accumulation of heat shock proteins (HSP70) (Western blot analysis) as measured in the heart and liver. In all organs the nitric oxide formation was completely blocked by the NO‐synthase inhibitor Nω‐nitro‐L‐arginine (L‐NNA). L‐NNA also markedly attenuated the heat shock‐induced accumulation of HSP70. The results suggests that nitric oxide is involved in the heat shock‐induced activation of HSP70 synthesis.
FEBS Letters | 1996
Igor Malyshev; Alexander V. Malugin; Lidia Yu. Golubeva; Tatiyana A. Zenina; Eugenia B. Manukhina; Vasak D. Mikoyan; Anatoly F. Vanin
As our group has shown, the NO‐synthase inhibitor L‐NNA decreased 2–3 times heat shock‐induced synthesis of the heat shock protein HSP70 (FEBS Lett. 370 (1995) 159–162). It was suggested that NO is involved in such induction. In the present study, it was found that (1) injection of the NO donor dinitrosyl iron complex (DNIC) into rats results in accumulation of HSP70 in the heart; (2) heat shock is accompanied by increased generation of NO (EPR assay) and HSP70 accumulation in cultured cells; (3) DNIC induces HSP70 accumulation in cultured cells not exposed to heat shock.
Journal of Hypertension | 2011
Nadezhda P. Lyamina; Svetlana Lyamina; Valery N. Senchiknin; Robert T. Mallet; H. Fred Downey; Eugenia B. Manukhina
Objectives Insufficient production and/or increased decomposition of the potent endogenous vasodilator nitric oxide plays an important role in development and progression of arterial hypertension and its complications. One of the most effective means of stimulating endogenous nitric oxide synthesis is controlled adaptation to hypoxia. This study examined the effect of a 20-day, intermittent, normobaric intermittent hypoxia conditioning (IHC) program on blood pressure (BP) and nitric oxide production in patients with stage 1 arterial hypertension. Methods The IHC sessions consisted of four to 10 cycles of alternating 3-min hypoxia (10% FIO2) and 3-min room air breathing. BP was monitored for 24u200ah before and after IHC, and nitric oxide synthesis was evaluated by 24-h urinary excretion of the stable nitric oxide metabolites nitrate and nitrite. Results IHC increased nitric oxide synthesis and decreased BP in hypertensive patients to values similar to those of normotensive individuals. Significant inverse correlations were found between nitric oxide production and disease duration, SBP, and DBP. Moreover, IHC enhancement of nitric oxide synthesis was especially robust in patients with arterial hypertension of more than 5 years duration. The reduction in BP persisted for at least 3 months in 28 of 33 hypertensive patients. Conclusion IHC exerted a robust, persistent therapeutic effect and can be considered as an alternative, nonpharmacological treatment for patients with stage 1 arterial hypertension. The antihypertensive action of IHC is associated with normalization of nitric oxide production.
Experimental Biology and Medicine | 2011
Eugenia B. Manukhina; Dinesh Jasti; Anatoly F. Vanin; H. Fred Downey
Although intermittent hypoxia is often associated with hypertension, experimental and clinical studies have demonstrated definite antihypertensive effects of some intermittent hypoxia conditioning (IHC) regimens. Mechanisms of this antihypertensive response are unknown. Endothelial dysfunction related to disturbed synthesis and/or reduced availability of nitric oxide (NO) has been linked to hypertension. Thus, experiments were conducted to determine if IHC can improve endothelium-dependent relaxation and formation of releasable vascular NO stores of young (4–8-week-old) spontaneously hypertensive rats (SHR). Rats were subjected to either IHC (9.5–10% O2, 5–10 min, 5–8 times per day, 20 d) or to sham conditioning. Endothelium-dependent relaxation to acetylcholine was measured in norepinephrine-precontracted, isolated aortic rings, and the size of NO stores was evaluated by percent relaxation to N-acetylcysteine (NAC), which releases stored NO. The capacity of aortic rings for NO storage was evaluated by the relaxation to NAC after prior incubation with an NO donor. IHC significantly suppressed the development of hypertension in young SHR. Endothelial function decreased from 54.7 ± 4.6% to 28.1 ± 6.4% relaxation to acetylcholine after 20 d of sham IHC, whereas endothelial function was sustained (60.3 ± 6.0% relaxation) in IHC rats. IHC also induced formation of available NO stores and enhanced the capacity of aortic rings to store NO. Therefore, the antihypertensive effect of IHC in young SHR is associated with prevention of endothelial dysfunction and with increased accumulation of NO stores in vascular walls.
Nitric Oxide | 2010
Anna V. Goryacheva; S. V. Kruglov; M. G. Pshennikova; B. V. Smirin; Igor Malyshev; Igor V. Barskov; Iljya V. Viktorov; H. Fred Downey; Eugenia B. Manukhina
This study tested the hypothesis that adaptation to intermittent hypoxia (AIH) can prevent overproduction of nitric oxide (NO) in brain and neurodegeneration induced by beta-amyloid (Aβ) toxicity. Rats were injected with a Aβ protein fragment (25-35) into the nucleus basalis magnocellularis. AIH (simulated altitude of 4000 m, 14 days, 4h daily) was produced prior to the Aβ injection. A passive, shock-avoidance, conditioned response test was used to evaluate memory function. Degenerating neurons were visualized in stained cortical sections. NO production was evaluated in brain tissue by the content of nitrite and nitrate. Expression of nNOS, iNOS, and eNOS was measured in the cortex and the hippocampus using Western blot analysis. 3-Nitrotyrosine formation, a marker of protein nitration, was quantified by slot blot analysis. Aβ injection impaired memory of rats; AIH significantly alleviated this disorder. Histological examination confirmed the protective effect of AIH. Degenerating neurons, which were numerous in the cortex of Aβ-injected, unadapted rats, were essentially absent in the brain of hypoxia-adapted rats. Injections of Aβ resulted in significant increases in NOx and in expression of all NOS isoforms in brain; AIH blunted these increases. NO overproduction was associated with increased amounts of 3-nitrotyrosine in the cortex and hippocampus. AIH alone did not significantly influence tissue 3-nitrotyrosine, but significantly restricted its increase after the Aβ injection. Therefore, AIH affords significant protection against experimental Alzheimers disease, and this protection correlates with restricted NO overproduction.
Experimental Biology and Medicine | 2013
Eugenia B. Manukhina; L. M. Belkina; Olga Terekhina; Denis V. Abramochkin; Elena A Smirnova; Olga P Budanova; Robert T. Mallet; H. Fred Downey
Favorable versus detrimental cardiovascular responses to intermittent hypoxia conditioning (IHC) are heavily dependent on experimental or pathological conditions, including the duration, frequency and intensity of the hypoxia exposures. Recently, we demonstrated that a program of moderate, normobaric IHC (FIO2 9.5–10% for 5–10u2009min/cycle, with intervening 4u2009min normoxia, 5–8 cycles/day for 20 days) in dogs afforded robust cardioprotection against infarction and arrhythmias induced by coronary artery occlusion–reperfusion, but this protection has not been verified in other species. Accordingly, in this investigation cardio- as well as vasoprotection were examined in male Wistar rats completing the normobaric IHC program or a sham program in which the rats continuously breathed atmospheric air. Myocardial ischemia and reperfusion (IR) was imposed by occlusion and reperfusion of the left anterior descending coronary artery in in situ experiments and by subjecting isolated, perfused hearts to global ischemia–reperfusion. Cardiac arrhythmias and myocardial infarct size were quantified in in situ experiments. Endothelial function was evaluated from the relaxation to acetylcholine of norepinephrine-precontracted aortic rings taken from in situ IR experiments, and from the increase in coronary flow produced by acetylcholine in isolated hearts. IHC sharply reduced cardiac arrhythmias during ischemia and decreased infarct size by 43% following IR. Endothelial dysfunction in aorta was marked after IR in sham rats, but not significant in IHC rats. Similar findings were found for the coronary circulations of isolated hearts. These findings support the hypothesis that moderate, normobaric IHC is cardio- and vasoprotective in a rat model of IR.
Experimental Biology and Medicine | 2016
Eugenia B. Manukhina; H. Fred Downey; Xiangrong Shi; Robert T. Mallet
Alzheimers disease (AD) is a leading cause of death and disability among older adults. Modifiable vascular risk factors for AD (VRF) include obesity, hypertension, type 2 diabetes mellitus, sleep apnea, and metabolic syndrome. Here, interactions between cerebrovascular function and development of AD are reviewed, as are interventions to improve cerebral blood flow and reduce VRF. Atherosclerosis and small vessel cerebral disease impair metabolic regulation of cerebral blood flow and, along with microvascular rarefaction and altered trans-capillary exchange, create conditions favoring AD development. Although currently there are no definitive therapies for treatment or prevention of AD, reduction of VRFs lowers the risk for cognitive decline. There is increasing evidence that brief repeated exposures to moderate hypoxia, i.e. intermittent hypoxic training (IHT), improve cerebral vascular function and reduce VRFs including systemic hypertension, cardiac arrhythmias, and mental stress. In experimental AD, IHT nearly prevented endothelial dysfunction of both cerebral and extra-cerebral blood vessels, rarefaction of the brain vascular network, and the loss of neurons in the brain cortex. Associated with these vasoprotective effects, IHT improved memory and lessened AD pathology. IHT increases endothelial production of nitric oxide (NO), thereby increasing regional cerebral blood flow and augmenting the vaso- and neuroprotective effects of endothelial NO. On the other hand, in AD excessive production of NO in microglia, astrocytes, and cortical neurons generates neurotoxic peroxynitrite. IHT enhances storage of excessive NO in the form of S-nitrosothiols and dinitrosyl iron complexes. Oxidative stress plays a pivotal role in the pathogenesis of AD, and IHT reduces oxidative stress in a number of experimental pathologies. Beneficial effects of IHT in experimental neuropathologies other than AD, including dyscirculatory encephalopathy, ischemic stroke injury, audiogenic epilepsy, spinal cord injury, and alcohol withdrawal stress have also been reported. Further research on the potential benefits of IHT in AD and other brain pathologies is warranted.
Experimental Biology and Medicine | 2008
Myoung-Gwi Ryou; Jie Sun; Kevin N. Oguayo; Eugenia B. Manukhina; H. Fred Downey; Robert T. Mallet
Physiologically modulated concentrations of nitric oxide (NO) are generally beneficial, but excessive NO can injure myocardium by producing cytotoxic peroxynitrite. Recently we reported that intermittent, normobaric hypoxia conditioning (IHC) produced robust cardioprotection against infarction and lethal arrhythmias in a canine model of coronary occlusion-reperfusion. This study tested the hypothesis that IHC suppresses myocardial nitric oxide synthase (NOS) activity and thereby dampens explosive, excessive NO formation upon reperfusion of occluded coronary arteries. Mongrel dogs were conditioned by a 20 d program of IHC (FIO2 9.5–10%; 5–10 min hypoxia/cycle, 5–8 cycles/d with intervening 4 min normoxia). One day later, ventricular myocardium was sampled for NOS activity assays, and immunoblot detection of the endothelial NOS isoform (eNOS). In separate experiments, myocardial nitrite (NO2 −) release, an index of NO formation, was measured at baseline and during reperfusion following 1 h occlusion of the left anterior descending coronary artery (LAD). Values in IHC dogs were compared with respective values in non-conditioned, control dogs. IHC lowered left and right ventricular NOS activities by 60%, from 100–115 to 40–45 mU/g protein (P < 0.01), and decreased eNOS content by 30% (P < 0.05). IHC dampened cumulative NO2 − release during the first 5 min reperfusion from 32 ± 7 to 14 ± 2 μmol/g (P < 0.05), but did not alter hyperemic LAD flow (15 ± 2 vs. 13 ± 2 ml/g). Thus, IHC suppressed myocardial NOS activity, eNOS content, and excessive NO formation upon reperfusion without compromising reactive hyperemia. Attenuation of the NOS/NO system may contribute to IHC-induced protection of myocardium from ischemia-reperfusion injury.