Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugenia G. Giannopoulou is active.

Publication


Featured researches published by Eugenia G. Giannopoulou.


ACM Computing Surveys | 2007

Ontology visualization methods—a survey

Akrivi Katifori; Constantin Halatsis; George Lepouras; Costas Vassilakis; Eugenia G. Giannopoulou

Ontologies, as sets of concepts and their interrelations in a specific domain, have proven to be a useful tool in the areas of digital libraries, the semantic web, and personalized information management. As a result, there is a growing need for effective ontology visualization for design, management and browsing. There exist several ontology visualization methods and also a number of techniques used in other contexts that could be adapted for ontology representation. The purpose of this article is to present these techniques and categorize their characteristics and features in order to assist method selection and promote future research in the area of ontology visualization.


Science | 2015

Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH

Jihye Yun; Edouard Mullarky; Changyuan Lu; Kaitlyn N. Bosch; Adam Kavalier; Keith Rivera; Jatin Roper; Iok In Christine Chio; Eugenia G. Giannopoulou; Carlo Rago; Ashlesha Muley; John M. Asara; Ji Hye Paik; Olivier Elemento; Zhengming Chen; Darryl Pappin; Lukas E. Dow; Nickolas Papadopoulos; Steven S. Gross; Lewis C. Cantley

Getting all stressed out by vitamin C Few experimental cancer therapies have incited as much debate as vitamin C. Yet the mechanistic effect of vitamin C on cancer cells is still poorly understood. Yun et al. studied human colorectal cancer cells with KRAS or BRAF mutations and found that they “handle” vitamin C in a different way than other cells, ultimately to their detriment (see the Perspective by Reczek and Chandel). Because a certain receptor is up-regulated in the mutant cells, they take up the oxidized form of vitamin C (dehydroascorbate). This leads to oxidative stress, inactivation of a glycolytic enzyme required by the mutant cells for growth, and finally cell death. Whether the selective toxicity of vitamin C to these mutant cells can be exploited therapeutically remains unclear. Science, this issue p. 1391; see also p. 1317 Cancer cells with certain mutations take up the oxidized form of vitamin C, which fatally disrupts their metabolism. [Also see Perspective by Reczek and Chandel] More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular DHA is reduced to vitamin C, depleting glutathione. Thus, reactive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibition of GAPDH in highly glycolytic KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF wild-type cells. High-dose vitamin C impairs tumor growth in Apc/KrasG12D mutant mice. These results provide a mechanistic rationale for exploring the therapeutic use of vitamin C for CRCs with KRAS or BRAF mutations.


Nature Communications | 2014

The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer

Dimple Chakravarty; Andrea Sboner; Sujit S. Nair; Eugenia G. Giannopoulou; Ruohan Li; Sven Hennig; Juan Miguel Mosquera; Jonathan Pauwels; Kyung Park; Myriam Kossai; Theresa Y. MacDonald; Jacqueline Fontugne; Nicholas Erho; Ismael A. Vergara; Mercedeh Ghadessi; Elai Davicioni; Robert B. Jenkins; Nallasivam Palanisamy; Zhengming Chen; Shinichi Nakagawa; Tetsuro Hirose; Neil H. Bander; Himisha Beltran; Archa H. Fox; Olivier Elemento; Mark A. Rubin

The androgen receptor (AR) plays a central role in establishing an oncogenic cascade that drives prostate cancer progression. Some prostate cancers escape androgen dependence and are often associated with an aggressive phenotype. The oestrogen receptor alpha (ERα) is expressed in prostate cancers, independent of AR status. However, the role of ERα remains elusive. Using a combination of chromatin immunoprecipitation (ChIP) and RNA-sequencing data, we identified an ERα-specific non-coding transcriptome signature. Among putatively ERα-regulated intergenic long non-coding RNAs (lncRNAs), we identified nuclear enriched abundant transcript 1 (NEAT1) as the most significantly overexpressed lncRNA in prostate cancer. Analysis of two large clinical cohorts also revealed that NEAT1 expression is associated with prostate cancer progression. Prostate cancer cells expressing high levels of NEAT1 were recalcitrant to androgen or AR antagonists. Finally, we provide evidence that NEAT1 drives oncogenic growth by altering the epigenetic landscape of target gene promoters to favour transcription.


Immunity | 2013

Synergistic Activation of Inflammatory Cytokine Genes by Interferon-γ-Induced Chromatin Remodeling and Toll-like Receptor Signaling

Yu Qiao; Eugenia G. Giannopoulou; Chun Hin Chan; Sungho Park; Shiaoching Gong; Janice Chen; Xiaoyu Hu; Olivier Elemento; Lionel B. Ivashkiv

Synergistic activation of inflammatory cytokine genes by interferon-γ (IFN-γ) and Toll-like receptor (TLR) signaling is important for innate immunity and inflammatory disease pathogenesis. Enhancement of TLR signaling, a previously proposed mechanism, is insufficient to explain strong synergistic activation of cytokine production in human macrophages. Rather, we found that IFN-γ induced sustained occupancy of transcription factors STAT1, IRF-1, and associated histone acetylation at promoters and enhancers at the TNF, IL6, and IL12B loci. This priming of chromatin did not activate transcription but greatly increased and prolonged recruitment of TLR4-induced transcription factors and RNA polymerase II to gene promoters and enhancers. Priming sensitized cytokine transcription to suppression by Jak inhibitors. Genome-wide analysis revealed pervasive priming of regulatory elements by IFN-γ and linked coordinate priming of promoters and enhancers with synergistic induction of transcription. Our results provide a synergy mechanism whereby IFN-γ creates a primed chromatin environment to augment TLR-induced gene transcription.


Cancer Research | 2013

Epigenetic Repression of miR-31 Disrupts Androgen Receptor Homeostasis and Contributes to Prostate Cancer Progression

Pei-Chun Lin; Ya-Lin Chiu; Samprit Banerjee; Kyung Park; Juan Miguel Mosquera; Eugenia G. Giannopoulou; Pedro Alves; Ashutosh Tewari; Mark Gerstein; Himisha Beltran; Ari Melnick; Olivier Elemento; Francesca Demichelis; Mark A. Rubin

Androgen receptor signaling plays a critical role in prostate cancer pathogenesis. Yet, the regulation of androgen receptor signaling remains elusive. Even with stringent androgen deprivation therapy, androgen receptor signaling persists. Here, our data suggest that there is a complex interaction between the expression of the tumor suppressor miRNA, miR-31, and androgen receptor signaling. We examined primary and metastatic prostate cancer and found that miR-31 expression was reduced as a result of promoter hypermethylation, and importantly, the levels of miR-31 expression were inversely correlated with the aggressiveness of the disease. As the expression of androgen receptor and miR-31 was inversely correlated in the cell lines, our study further suggested that miR-31 and androgen receptor could mutually repress each other. Upregulation of miR-31 effectively suppressed androgen receptor expression through multiple mechanisms and inhibited prostate cancer growth in vivo. Notably, we found that miR-31 targeted androgen receptor directly at a site located in the coding region, which was commonly mutated in prostate cancer. In addition, miR-31 suppressed cell-cycle regulators including E2F1, E2F2, EXO1, FOXM1, and MCM2. Together, our findings suggest a novel androgen receptor regulatory mechanism mediated through miR-31 expression. The downregulation of miR-31 may disrupt cellular homeostasis and contribute to the evolution and progression of prostate cancer. We provide implications for epigenetic treatment and support clinical development of detecting miR-31 promoter methylation as a novel biomarker.


Nature | 2013

NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche

Chiung-Ying Chang; H. Amalia Pasolli; Eugenia G. Giannopoulou; Géraldine Guasch; Richard M. Gronostajski; Olivier Elemento; Elaine Fuchs

Adult stem cells reside in specialized niches where they receive environmental cues to maintain tissue homeostasis. In mammals, the stem cell niche within hair follicles is home to epithelial hair follicle stem cells and melanocyte stem cells, which sustain cyclical bouts of hair regeneration and pigmentation. To generate pigmented hairs, synchrony is achieved such that upon initiation of a new hair cycle, stem cells of each type activate lineage commitment. Dissecting the inter-stem-cell crosstalk governing this intricate coordination has been difficult, because mutations affecting one lineage often affect the other. Here we identify transcription factor NFIB as an unanticipated coordinator of stem cell behaviour. Hair follicle stem-cell-specific conditional targeting of Nfib in mice uncouples stem cell synchrony. Remarkably, this happens not by perturbing hair cycle and follicle architecture, but rather by promoting melanocyte stem cell proliferation and differentiation. The early production of melanin is restricted to melanocyte stem cells at the niche base. Melanocyte stem cells more distant from the dermal papilla are unscathed, thereby preventing hair greying typical of melanocyte stem cell differentiation mutants. Furthermore, we pinpoint KIT-ligand as a dermal papilla signal promoting melanocyte stem cell differentiation. Additionally, through chromatin-immunoprecipitation with high-throughput-sequencing and transcriptional profiling, we identify endothelin 2 (Edn2) as an NFIB target aberrantly activated in NFIB-deficient hair follicle stem cells. Ectopically induced Edn2 recapitulates NFIB-deficient phenotypes in wild-type mice. Conversely, endothelin receptor antagonists and/or KIT blocking antibodies prevent precocious melanocyte stem cell differentiation in the NFIB-deficient niche. Our findings reveal how melanocyte and hair follicle stem cell behaviours maintain reliance upon cooperative factors within the niche, and how this can be uncoupled in injury, stress and disease states.


BMC Bioinformatics | 2011

An integrated ChIP-seq analysis platform with customizable workflows

Eugenia G. Giannopoulou; Olivier Elemento

BackgroundChromatin immunoprecipitation followed by next generation sequencing (ChIP-seq), enables unbiased and genome-wide mapping of protein-DNA interactions and epigenetic marks. The first step in ChIP-seq data analysis involves the identification of peaks (i.e., genomic locations with high density of mapped sequence reads). The next step consists of interpreting the biological meaning of the peaks through their association with known genes, pathways, regulatory elements, and integration with other experiments. Although several programs have been published for the analysis of ChIP-seq data, they often focus on the peak detection step and are usually not well suited for thorough, integrative analysis of the detected peaks.ResultsTo address the peak interpretation challenge, we have developed ChIPseeqer, an integrative, comprehensive, fast and user-friendly computational framework for in-depth analysis of ChIP-seq datasets. The novelty of our approach is the capability to combine several computational tools in order to create easily customized workflows that can be adapted to the users needs and objectives. In this paper, we describe the main components of the ChIPseeqer framework, and also demonstrate the utility and diversity of the analyses offered, by analyzing a published ChIP-seq dataset.ConclusionsChIPseeqer facilitates ChIP-seq data analysis by offering a flexible and powerful set of computational tools that can be used in combination with one another. The framework is freely available as a user-friendly GUI application, but all programs are also executable from the command line, thus providing flexibility and automatability for advanced users.


Nature Immunology | 2015

Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation

Xiaodi Su; Yingpu Yu; Yi Zhong; Eugenia G. Giannopoulou; Xiaoyu Hu; Hui Liu; Justin R. Cross; Gunnar Rätsch; Charles M Rice; Lionel B. Ivashkiv

Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ–mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation.


Journal of Proteome Research | 2008

Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry

Spiros D. Garbis; Stavros I. Tyritzis; Theodoros Roumeliotis; Panagiotis Zerefos; Eugenia G. Giannopoulou; Antonia Vlahou; Sophia Kossida; Jose I. Diaz; Stavros Vourekas; Constantin Tamvakopoulos; Kitty Pavlakis; Despina Sanoudou; Constantinos Constantinides

This study aimed to identify candidate new diagnosis and prognosis markers and medicinal targets of prostate cancer (PCa), using state of the art proteomics. A total of 20 prostate tissue specimens from 10 patients with benign prostatic hyperplasia (BPH) and 10 with PCa (Tumour Node Metastasis [TNM] stage T1-T3) were analyzed by isobaric stable isotope labeling (iTRAQ) and two-dimensional liquid chromatography-tandem mass spectrometry (2DLC-MS/MS) approaches using a hybrid quadrupole time-of-flight system (QqTOF). The study resulted in the reproducible identification of 825 nonredundant gene products (p < or = 0.05) of which 30 exhibited up-regulation (> or =2-fold) and another 35 exhibited down-regulation (< or =0.5-fold) between the BPH and PCa specimens constituting a major contribution toward their global proteomic assessment. Selected findings were confirmed by immunohistochemical analysis of prostate tissue specimens. The proteins determined support existing knowledge and uncover novel and promising PCa biomarkers. The PCa proteome found can serve as a useful aid for the identification of improved diagnostic and prognostic markers and ultimately novel chemopreventive and therapeutic targets.


PLOS Genetics | 2014

Histone Methyltransferase MMSET/NSD2 Alters EZH2 Binding and Reprograms the Myeloma Epigenome through Global and Focal Changes in H3K36 and H3K27 Methylation

Relja Popovic; Eva Martinez-Garcia; Eugenia G. Giannopoulou; Quanwei Zhang; Qingyang Zhang; Teresa Ezponda; Mrinal Y. Shah; Christine Will; Eliza C. Small; Youjia Hua; Marinka Bulic; Yanwen Jiang; Matteo Carrara; Raffaele Calogero; William L. Kath; Neil L. Kelleher; Ji Ping Wang; Olivier Elemento; Jonathan D. Licht

Overexpression of the histone methyltransferase MMSET in t(4;14)+ multiple myeloma patients is believed to be the driving factor in the pathogenesis of this subtype of myeloma. MMSET catalyzes dimethylation of lysine 36 on histone H3 (H3K36me2), and its overexpression causes a global increase in H3K36me2, redistributing this mark in a broad, elevated level across the genome. Here, we demonstrate that an increased level of MMSET also induces a global reduction of lysine 27 trimethylation on histone H3 (H3K27me3). Despite the net decrease in H3K27 methylation, specific genomic loci exhibit enhanced recruitment of the EZH2 histone methyltransferase and become hypermethylated on this residue. These effects likely contribute to the myeloma phenotype since MMSET-overexpressing cells displayed increased sensitivity to EZH2 inhibition. Furthermore, we demonstrate that such MMSET-mediated epigenetic changes require a number of functional domains within the protein, including PHD domains that mediate MMSET recruitment to chromatin. In vivo, targeting of MMSET by an inducible shRNA reversed histone methylation changes and led to regression of established tumors in athymic mice. Together, our work elucidates previously unrecognized interplay between MMSET and EZH2 in myeloma oncogenesis and identifies domains to be considered when designing inhibitors of MMSET function.

Collaboration


Dive into the Eugenia G. Giannopoulou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lionel B. Ivashkiv

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Qiao

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyung-Hyun Park-Min

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Sung Ho Park

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Elias S. Manolakos

National and Kapodistrian University of Athens

View shared research outputs
Researchain Logo
Decentralizing Knowledge