Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugenia Mata-Greenwood is active.

Publication


Featured researches published by Eugenia Mata-Greenwood.


Circulation Research | 2003

Increased Superoxide Generation Is Associated With Pulmonary Hypertension in Fetal Lambs A Role for NADPH Oxidase

Lisa A. Brennan; Robin H. Steinhorn; Stephen Wedgwood; Eugenia Mata-Greenwood; Everett A. Roark; James A. Russell; Stephen M. Black

Abstract— Ligation of the ductus arteriosus in utero produces pulmonary hypertension and vascular remodeling in fetal and newborn lambs. However, the mechanisms producing these vascular changes are not well defined. Because reactive oxygen species (ROS) have been implicated as mediators of smooth muscle cell proliferation, we hypothesized that increased formation of ROS may be involved in the pathophysiology of pulmonary hypertension after in utero ductal ligation. Using ethidium fluorescence, we demonstrated an increase in superoxide levels after 9 days of ductal ligation compared with control lungs (P <0.05) that was localized to the adventitia and smooth muscle cells of hypertensive vessels. SOD-1 and SOD-2 protein levels and activities in lung, vein, and artery of hypertensive lambs were unchanged relative to controls after 2 days of ductal ligation. However, after 9 days, superoxide dismutase (SOD) activity was significantly decreased in arteries from ligated lambs without associated changes in SOD protein expression (P <0.05). Examination of NADPH oxidase expression as a potential source of the superoxide production indicated that the levels of p67phox, a subunit of the NADPH oxidase complex, were significantly increased in the pulmonary arteries, but not veins, from the ligated lung as early as 2 days (P <0.05). Functional analyses demonstrated that reducing superoxide levels significantly increased the NO-mediated relaxation of pulmonary arteries isolated after 9 days, but not 2 days, of ductal ligation (P <0.05). These results suggest that increased NADPH oxidase expression may increase levels of superoxide in persistent pulmonary hypertension of the newborn lung tissue, and that increased superoxide blunts vascular relaxations to exogenous NO while stimulating smooth muscle cell growth.


Circulation | 2003

Emergence of Smooth Muscle Cell Endothelin B–Mediated Vasoconstriction in Lambs With Experimental Congenital Heart Disease and Increased Pulmonary Blood Flow

Stephen M. Black; Eugenia Mata-Greenwood; Robert W. Dettman; Boaz Ovadia; Robert K. Fitzgerald; Olaf Reinhartz; Stefan Thelitz; Robin H. Steinhorn; Rene P. Gerrets; Karen D. Hendricks-Muñoz; Gregory A. Ross; Janine M. Bekker; Michael Johengen; Jeffrey R. Fineman

Background—Endothelin-1 (ET-1) has been implicated in the pathophysiology of pulmonary hypertension. In 1-month-old lambs with increased pulmonary blood flow, we have demonstrated early alterations in the ET-1 cascade. The objective of this study was to investigate the role of potential later alterations of the ET cascade in the pathophysiology of pulmonary hypertension secondary to increased pulmonary blood flow. Methods and Results—Eighteen fetal lambs underwent in utero placement of an aortopulmonary vascular graft (shunt) and were studied 8 weeks after spontaneous delivery. Compared with age-matched control lambs, lung tissue ET-1 levels were increased in shunt lambs (317.2±113.8 versus 209.8±61.8 pg/g, P <0.05). In shunt lambs (n=9), exogenous ET-1 induced potent pulmonary vasoconstriction, which was blocked by the ETA receptor antagonist PD 156707 (n=3). This pulmonary vasoconstriction was mimicked by exogenous Ala1,3,11,15 ET-1 (4 Ala ET-1), the ETB receptor agonist, and was blocked by the ETB receptor antagonist BQ 788 (n=3). However, in control lambs (n=7), ET-1 and 4 Ala ET-1 did not change pulmonary vascular tone. In contrast to 4-week-old shunt lambs, immunohistochemistry revealed the emergence of ETB receptors on smooth muscle cells in the vasculature of 8-week-old shunt lambs. Conclusions—Over time, increased pulmonary blood flow and/or pressure results in the emergence of ETB-mediated vasoconstriction, which coincides with the emergence of ETB receptors on smooth muscle cells. These data suggest an important role for ETB receptors in the pathophysiology of pulmonary hypertension in this animal model of increased pulmonary blood flow.


Hypertension | 2013

Gestational Hypoxia Induces Preeclampsia-Like Symptoms via Heightened Endothelin-1 Signaling in Pregnant Rats

Jianjun Zhou; Daliao Xiao; Yali Hu; Zhiqun Wang; Alexandra Paradis; Eugenia Mata-Greenwood; Lubo Zhang

Preeclampsia is a life-threatening pregnancy disorder. However, its pathogenesis remains unclear. We tested the hypothesis that gestational hypoxia induces preeclampsia-like symptoms via heightened endothelin-1 (ET-1) signaling. Time-dated pregnant and nonpregnant rats were divided into normoxic and hypoxic (10.5% O2 from the gestational day 6–21) groups. Chronic hypoxia had no significant effect on blood pressure or proteinuria in nonpregnant rats but significantly increased blood pressure on day 12 (systolic blood pressure, 111.7±6.1 versus 138.5±3.5 mm Hg; P=0.004) and day 20 (systolic blood pressure, 103.4±4.6 versus 125.1±6.1 mm Hg; P=0.02) in pregnant rats and urine protein (&mgr;g/&mgr;L)/creatinine (nmol/&mgr;L) ratio on day 20 (0.10±0.01 versus 0.20±0.04; P=0.04), as compared with the normoxic control group. This was accompanied with asymmetrical fetal growth restriction. Hypoxia resulted in impaired trophoblast invasion and uteroplacental vascular remodeling. In addition, plasma ET-1 levels, as well as the abundance of prepro–ET-1 mRNA, ET-1 type A receptor and angiotensin II type 1 receptor protein in the kidney and placenta were significantly increased in the chronic hypoxic group, as compared with the control animals. Treatment with the ET-1 type A receptor antagonist, BQ123, during the course of hypoxia exposure significantly attenuated the hypoxia-induced hypertension and other preeclampsia-like features. The results demonstrate that chronic hypoxia during gestation induces preeclamptic symptoms in pregnant rats via heightened ET-1 and ET-1 type A receptor–mediated signaling, providing a molecular mechanism linking gestational hypoxia and increased risk of preeclampsia.


Reproductive Sciences | 2008

Racial Differences in Nitric Oxide—Dependent Vasorelaxation

Eugenia Mata-Greenwood; Dong-bao Chen

Along with the growing heterogeneity of the American population, ethnic/racial disparity is becoming a clear health issue in the United States. The awareness of ethnic/racial disparities has been growing because of considerable data gathered from recent clinical and epidemiological studies. These studies have highlighted the importance of addressing these differences in the diagnosis and treatment of various diseases potentially according to race. It is becoming particularly clear that there is a 2- to 3-fold racial difference in certain cardiovascular diseases (eg, preeclampsia) associated with dysfunctional nitric oxide—mediated vasodilation. In this review, the authors summarize the current literature on racial disparities in nitric oxide—mediated vasodilation in relation to cardiovascular health with an emphasis on vascular nitric oxide bioavailability as a balance between production via endothelial nitric oxide synthase and degradation through reactive oxygen species. The major hypotheses postulated on the biological basis of these differences are also highlighted.


Archive | 2005

Characterization of Natural Product Chemopreventive Agents

John M. Pezzuto; Jerome W. Kosmeder; Eun Jung Park; Sang Kook Lee; Muriel Cuendet; Joell J. Gills; Krishna P. Bhat; Simonida Grubjesic; Hye-Sung Park; Eugenia Mata-Greenwood; YingMeei Tan; Rong Yu; Daniel D. Lantvit; A. Douglas Kinghorn

Cancer is a complicated group of diseases characterized by the uncontrolled growth and spread of abnormal cells (1). In 2002, 1,284,900 new cases of cancer were estimated to be diagnosed in the United States (US), and about 555,500 persons were expected to die of cancer, i.e., more than 1500 every day (2). Despite small decreases in overall cancer incidence and mortality rates in the US since the early 1990s, the total number of recorded cancer deaths continues to increase due to an aging and expanding population (2). Furthermore, deaths from certain carcinomas of the lung and bronchus, breast, prostate, and colon and rectum remain high, and 5-yr survival rates for many cancer patients are still very low: for cancers of the brain, 32%; esophagus, 14%; liver, 6%; lung and bronchus, 15%; pancreas, 4%; stomach, 22%; and multiple myeloma, 29% (2). Obviously, cancer remains a formidable public health problem.


Placenta | 2008

Differential Activation of Multiple Signalling Pathways Dictates eNOS Upregulation by FGF2 but not VEGF in Placental Artery Endothelial Cells

Eugenia Mata-Greenwood; Wu-Xiang Liao; Jing Zheng; Dong-bao Chen

Fibroblast growth factor (FGF2), but not vascular endothelial growth factor (VEGF), upregulates endothelial nitric oxide synthase (eNOS) protein expression, at least partially, via activation of extracellular signal-regulated kinase 2/1 (ERK2/1) in ovine fetoplacental artery endothelial (oFPAE) cells. Herein we further investigated the temporal effects of FGF2 and VEGF on other signalling pathways including members (Jun N-terminal kinase JNK1/2 and p38MAPK) of mitogen-activated protein kinases (MAPK), phosphatidylinositol-3 kinase/v-akt murine thymoma viral oncogene homologue 1 (PI3K/AKT1), and the tyrosine kinase c-SRC, and examined if either one or more of these pathways play a role in the differential regulation of eNOS by FGF2 and VEGF. We first confirmed that in oFPAE cells, FGF2, but not VEGF, increased eNOS protein. FGF2 stimulated eNOS protein in a time- and concentration-dependent manner, which also depended on cell density. FGF2 provoked sustained (5min to 12h) whereas VEGF only stimulated transient (5min) ERK2/1 phosphorylation. FGF2 was 1.7-fold more potent in stimulating ERK2/1 phosphorylation than VEGF. FGF2 and VEGF only transiently activated JNK1/2 and AKT1 within 5min; however, FGF2 was a stronger stimulus than VEGF. FGF2 and VEGF did not significantly activate p38MAPK at 5min; however, VEGF stimulated p38MAPK phosphorylation at 60min. VEGF but not FGF2 significantly stimulated c-SRC phosphorylation. Inhibitors of MEK-ERK2/1 (PD98059), JNK1/2 (SP600125) and PI3K (wortmannin), but not p38MAPK (SB203580) and SRC (PP2), decreased the FGF2-increased eNOS protein expression. Thus, the FGF2-induced eNOS protein expression requires activation of multiple signalling pathways including ERK2/1, JNK1/2 and PI3K/AKT1. Differences in intensity and temporal patterns of activation of these pathways by FGF2 and VEGF may account for their differential effects on eNOS expression in OFPAE cells.


Biology of Reproduction | 2006

Global Protein Expression Profiling Underlines Reciprocal Regulation of Caveolin 1 and Endothelial Nitric Oxide Synthase Expression in Ovariectomized Sheep Uterine Artery by Estrogen/Progesterone Replacement Therapy

Dong-bao Chen; Steve Jia; Adam G. King; Adrian Barker; Su-min Li; Eugenia Mata-Greenwood; Jing Zheng; Ronald R. Magness

Abstract Ovariectomized (OVX) ewes were assigned to receive vehicle, progesterone (P4, 0.9-g controlled internal drug release vaginal implants), estradiol-17β (E2, 5 μg/kg bolus + 6 μg kg−1 day−1), or P4 + E2 for 10 days (n = 3/group). Uterine artery endothelial proteins were mechanically isolated on Day 10. The samples were used for protein expression profiling by the Ciphergen Proteinchip system and immunoblotting analysis of endothelial nitric oxide synthase (NOS3, also termed eNOS) and caveolin 1. Uterine artery rings were cut and analyzed by immunohistochemistry to localize NOS3 and caveolin 1 expression. With the use of the IMAC3 protein chip with loading as little as 2 μg protein/sample, many protein peaks could be detected. Compared to vehicle controls, a ∼133.1-kDa protein was identified to be upregulated by 2- to 4-fold in OVX ewes receiving E2, P4, and their combination, whereas a ∼22.6-kDa protein was downregulated by 2- to 4-fold in OVX ewes receiving E2 and E2/P4, but not P4 treatments. Western blot analysis revealed that E2, P4, and their combination all increased NOS3 protein, whereas E2 and its combination with P4, but not P4 alone, downregulated caveolin 1 expression. Immunohistochemical analysis revealed that NOS3 was mainly localized in the endothelium and upregulated by E2, whereas caveolin 1 was localized in both endothelium and smooth muscle and downregulated by E2. Thus, our data demonstrate that uterine artery endothelial NOS3 and caveolin 1 are regulated reciprocally by estrogen replacement therapy. In keeping with the facts that E2, but not P4, causes uterine vasodilatation and that E2 and P4 increase NOS3 expression, but only E2 decrease caveolin 1 expression, our current study suggests that both increased NOS3 expression and decreased caveolin 1 expression are needed to facilitate estrogen-induced uterine vasodilatation.


American Journal of Physiology-cell Physiology | 2011

Contributions of VEGF to age-dependent transmural gradients in contractile protein expression in ovine carotid arteries

Stacy M. Butler; Jenna M. Abrassart; Margaret C. Hubbell; Olayemi O. Adeoye; Andrew Semotiuk; James M. Williams; Eugenia Mata-Greenwood; Omid Khorram; William J. Pearce

The present study explores the hypothesis that arterial smooth muscle cells are organized into layers with similar phenotypic characteristics that vary with the relative position between the lumen and the adventitia due to transmural gradients in vasotrophic factors. A corollary hypothesis is that vascular endothelial growth factor (VEGF) is a factor that helps establish transmural variations in smooth muscle phenotype. Organ culture of endothelium-denuded ovine carotid arteries with 3 ng/ml VEGF-A(165) for 24 h differentially and significantly influenced potassium-induced (55% increase) and stretch-induced (36% decrease) stress-strain relations in adult (n = 18) but not term fetal (n = 21) arteries, suggesting that smooth muscle reactivity to VEGF is acquired during postnatal maturation. Because inclusion of fetal bovine serum significantly inhibited all contractile effects of VEGF (adult: n = 11; fetus: n = 11), it was excluded in all cultures. When assessed in relation to the distance between the lumen and the adventitia in immunohistochemically stained coronal artery sections, expression of smooth muscle α-actin (SMαA), myosin light chain kinase (MLCK), and 20-kDa regulatory myosin light chain exhibited distinct protein-dependent and age-dependent gradients across the artery wall. VEGF depressed regional SMαA abundance up to 15% in adult (n = 6) but not in fetal (n = 6) arteries, increased regional MLCK abundance up to 140% in fetal (n = 8) but not in adult (n = 10) arteries, and increased regional MLC(20) abundance up to 28% in fetal arteries (n = 7) but decreased it by 17% in adult arteries (n = 9). Measurements of mRNA levels verified that VEGF receptor transcripts for both Flt-1 and kinase insert domain receptor (KDR) were expressed in both fetal and adult arteries. Overall, the present data support the unique hypothesis that smooth muscle cells are organized into lamina of similar phenotype with characteristics that depend on the relative position between the lumen and the adventitia and involve the direct effects of growth factors such as VEGF, which acts independently of the vascular endothelium in an age-dependent manner.


Journal of Biological Chemistry | 2010

Activation of AP-1 Transcription Factors Differentiates FGF2 and Vascular Endothelial Growth Factor Regulation of Endothelial Nitric-oxide Synthase Expression in Placental Artery Endothelial Cells

Eugenia Mata-Greenwood; Wu-Xiang Liao; Wen Wang; Jing Zheng; Dong-bao Chen

FGF2 (fibroblast growth factor 2), but not vascular endothelial growth factor (VEGF), stimulates sustained activation of ERK2/1 for endothelial NOS3 (nitric-oxide synthase 3) protein expression in ovine fetoplacental artery endothelial cells (oFPAEC). We deciphered herein the downstream signaling of ERK2/1 responsible for NOS3 expression by FGF2 in oFPAEC. FGF2, but not VEGF, increased NOS3 mRNA levels without altering its degradation. FGF2, but not VEGF, trans-activated sheep NOS3 promoter, and this was dependent on ERK2/1 activation. FGF2 did not trans-activate NOS3 promoters with deletions upstream of the consensus AP-1 site (TGAGTC A, −678 to −685). Trans-activation of wild-type NOS3 promoter by FGF2 was significantly inhibited when either the AP-1 or the cAMP-response element (CRE)-like sequence (TGCGTCA, −752 to −758) was mutated and was completely blocked when both were mutated. EMSA analyses showed that FGF2, but not VEGF, stimulated AP-1 and CRE DNA-protein complexes primarily composed of JunB and Fra1. Chromatin immunoprecipitation assays confirmed JunB/Fra1 binding to NOS3 promoter AP-1 and CRE elements in intact cells. FGF2, but not VEGF, stimulated JunB and Fra1 expressions; all preceded NOS3 up-regulation and were inhibited by PD98059. Down-regulation of JunB or Fra-1, but not c-Jun, blocked FGF2 stimulation of NOS3 expression and NO production. AP-1 inhibition suppressed FGF2 stimulation of NOS3 expression in human umbilical vein EC and uterine artery endothelial cells. Thus, FGF2 induction of NOS3 expression is mainly mediated by AP-1-dependent transcription involving JunB and Fra1 up-regulation via sustained ERK2/1 activation in endothelial cells.


American Journal of Physiology-endocrinology and Metabolism | 2014

Characterization of an animal model of pregnancy-induced vitamin D deficiency due to metabolic gene dysregulation

Ravi Goyal; Lubo Zhang; Arlin B. Blood; David J. Baylink; Lawrence D. Longo; Bryan T. Oshiro; Eugenia Mata-Greenwood

Vitamin D deficiency has been associated with pregnancy complications such as preeclampsia, gestational diabetes, and recurrent miscarriage. Therefore, we hypothesized differences in vitamin D status between healthy [Sprague-Dawley (SD) and Lewis (LW)] and complicated [Brown Norway (BN)] rat pregnancies. In SD, LW, and BN rats, we analyzed the maternal plasma levels of the vitamin D metabolites 25-OH-D and 1,25-(OH)2-D at prepregnancy, pregnancy, and postpartum. Analysis of the active metabolite 1,25-(OH)2-D showed a twofold increase in pregnant SD and LW rats but a nearly 10-fold decrease in pregnant BN rats compared with nonpregnant controls. BN rats had a pregnancy-dependent upregulation of CYP24a1 expression, a key enzyme that inactivates vitamin D metabolites. In contrast, the maternal renal expression of CYP24a1 in SD and LW rats remained constant throughout pregnancy. Analysis of the vitamin D receptor (VDR) indicated that LW and SD but not BN rats experience a pregnancy-induced 10-fold decrease in maternal renal VDR protein levels. Further analysis of bisulfite-converted and genomic DNA indicated that the observed differences in maternal renal regulation of CYP24a1 during pregnancy and lactation are not due to differences in CYP24a1 promoter methylation or single-nucleotide polymorphisms. Finally, supplementation with 1,25-(OH)2-D significantly improved the reproductive phenotype of BN rats by increasing litter size and maternal-fetal weight outcomes. We conclude that BN rats represent a novel animal model of pregnancy-specific vitamin D deficiency that is linked to pregnancy complications. Vitamin D deficiency in BN rats correlates with maternal renal CYP24a1 upregulation followed by CYP27b1 upregulation.

Collaboration


Dive into the Eugenia Mata-Greenwood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-bao Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Zheng

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge