Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugenia Russinova is active.

Publication


Featured researches published by Eugenia Russinova.


The Plant Cell | 2004

Heterodimerization and Endocytosis of Arabidopsis Brassinosteroid Receptors BRI1 and AtSERK3 (BAK1)

Eugenia Russinova; Jan Willem Borst; Mark Kwaaitaal; Ana I. Caño-Delgado; Yanhai Yin; Joanne Chory; Sacco C. de Vries

In Arabidopsis thaliana brassinosteroid (BR), perception is mediated by two Leu-rich repeat receptor-like kinases, BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) (Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE3 [AtSERK3]). Genetic, biochemical, and yeast (Saccharomyces cerevisiae) interaction studies suggested that the BRI1-BAK1 receptor complex initiates BR signaling, but the role of the BAK1 receptor is still not clear. Using transient expression in protoplasts of BRI1 and AtSERK3 fused to cyan and yellow fluorescent green fluorescent protein variants allowed us to localize each receptor independently in vivo. We show that BRI1, but not AtSERK3, homodimerizes in the plasma membrane, whereas BRI1 and AtSERK3 preferentially heterodimerize in the endosomes. Coexpression of BRI1 and AtSERK3 results in a change of the steady state distribution of both receptors because of accelerated endocytosis. Endocytic vesicles contain either BRI1 or AtSERK3 alone or both. We propose that the AtSERK3 protein is involved in changing the equilibrium between plasma membrane–located BRI1 homodimers and endocytosed BRI1-AtSERK3 heterodimers.


Development | 2011

Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots

Mary-Paz González-García; Josep Vilarrasa-Blasi; Miroslava Zhiponova; Fanchon Divol; Santiago Mora-García; Eugenia Russinova; Ana I. Caño-Delgado

Brassinosteroids (BRs) play crucial roles in plant growth and development. Previous studies have shown that BRs promote cell elongation in vegetative organs in several plant species, but their contribution to meristem homeostasis remains unexplored. Our analyses report that both loss- and gain-of-function BR-related mutants in Arabidopsis thaliana have reduced meristem size, indicating that balanced BR signalling is needed for the optimal root growth. In the BR-insensitive bri1-116 mutant, the expression pattern of the cell division markers CYCB1;1, ICK2/KRP2 and KNOLLE revealed that a decreased mitotic activity accounts for the reduced meristem size; accordingly, this defect could be overcome by the overexpression of CYCD3;1. The activity of the quiescent centre (QC) was low in the short roots of bri1-116, as reported by cell type-specific markers and differentiation phenotypes of distal stem cells. Conversely, plants treated with the most active BR, brassinolide, or mutants with enhanced BR signalling, such as bes1-D, show a premature cell cycle exit that results in early differentiation of meristematic cells, which also negatively influence meristem size and overall root growth. In the stem cell niche, BRs promote the QC renewal and differentiation of distal stem cells. Together, our results provide evidence that BRs play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis root meristem.


The Plant Cell | 2005

The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 Control Male Sporogenesis

Catherine Albrecht; Eugenia Russinova; Valérie Hecht; Erik Baaijens; Sacco C. de Vries

The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family of plasma membrane receptors consists of five closely related members. The SERK1 and SERK2 genes show a complex expression pattern throughout development. Both are expressed in anther primordia up to the second parietal division. After this point, expression ceases in the sporocytes and is continued in the tapetum and middle layer precursors. Single knockout mutants of SERK1 and SERK2 show no obvious phenotypes. Double mutants of SERK1 and SERK2 are completely male sterile due to a failure in tapetum specification. Fertility can be restored by a single copy of either gene. The SERK1 and SERK2 proteins can form homodimers or heterodimers in vivo, suggesting they are interchangeable in the SERK1/SERK2 signaling complex.


The Plant Cell | 2006

The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE1.

Rumyana Karlova; Eugenia Russinova; José Aker; Jacques Vervoort; Sacco C. de Vries

Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) is a leucine-rich repeat receptor-like kinase (LRR-RLK) involved in the acquisition of embryogenic competence and in male sporogenesis. To determine the composition of the SERK1 signaling complex in vivo, we generated plants expressing the SERK1 protein fused to cyan fluorescent protein under SERK1 promoter control. The membrane receptor complex was immunoprecipitated from seedlings, and the coimmunoprecipitating proteins were identified using liquid chromatography/matrix-assisted laser desorption ionization–time of flight/mass spectrometry of the trypsin-released peptides. This approach identified two other LRR-RLKs, the BRASSINOSTEROID-INSENSITIVE1 (BRI1) receptor and its coreceptor, the SERK3 or BRI1-ASSOCIATED KINASE1 protein. In addition, KINASE-ASSOCIATED PROTEIN PHOSPHATASE, CDC48A, and 14-3-3ν were found. Finally, the MADS box transcription factor AGAMOUS-LIKE15 and an uncharacterized zinc finger protein, a member of the CONSTANS family, were identified as part of the SERK1 complex. Using blue native gel electrophoresis, we show that SERK1 and SERK3 are part of BRI1-containing multiple protein complexes with relative masses between 300 and 500 kD. The SERK1 mutant allele serk1-1 enhances the phenotype of the weak BRI1 allele bri1-119. Collectively, these results suggest that apart from SERK3, SERK1 is also involved in the brassinolide signaling pathway.


Nature Cell Biology | 2012

SPEECHLESS integrates brassinosteroid and stomata signalling pathways

Gustavo E. Gudesblat; Joanna Schneider-Pizoń; Camilla Betti; Juliane Mayerhofer; Isabelle Vanhoutte; Walter Van Dongen; Miroslava Zhiponova; Sacco C. de Vries; Claudia Jonak; Eugenia Russinova

Stomatal formation is regulated by multiple developmental and environmental signals, but how these signals are integrated to control this process is not fully understood. In Arabidopsis thaliana, the basic helix-loop-helix transcription factor SPEECHLESS (SPCH) regulates the entry, amplifying and spacing divisions that occur during stomatal lineage development. SPCH activity is negatively regulated by mitogen-activated protein kinase (MAPK)-mediated phosphorylation. Here, we show that in addition to MAPKs, SPCH activity is also modulated by brassinosteroid (BR) signalling. The GSK3/SHAGGY-like kinase BIN2 (BR INSENSITIVE2) phosphorylates residues overlapping those targeted by the MAPKs, as well as four residues in the amino-terminal region of the protein outside the MAPK target domain. These phosphorylation events antagonize SPCH activity and limit epidermal cell proliferation. Conversely, inhibition of BIN2 activity in vivo stabilizes SPCH and triggers excessive stomatal and non-stomatal cell formation. We demonstrate that through phosphorylation inputs from both MAPKs and BIN2, SPCH serves as an integration node for stomata and BR signalling pathways to control stomatal development in Arabidopsis.


Chemistry & Biology | 2009

Chemical Inhibition of a Subset of Arabidopsis thaliana GSK3-like Kinases Activates Brassinosteroid Signaling

Bert De Rybel; Dominique Audenaert; Grégory Vert; Wilfried Rozhon; Juliane Mayerhofer; Frank Peelman; Silvie Coutuer; Tinneke Denayer; Leentje Jansen; Long Nguyen; Isabelle Vanhoutte; Gerrit T.S. Beemster; Kris Vleminckx; Claudia Jonak; Joanne Chory; Dirk Inzé; Eugenia Russinova; Tom Beeckman

Glycogen synthase kinase 3 (GSK3) is a key regulator in signaling pathways in both animals and plants. Three Arabidopsis thaliana GSK3s are shown to be related to brassinosteroid (BR) signaling. In a phenotype-based compound screen we identified bikinin, a small molecule that activates BR signaling downstream of the BR receptor. Bikinin directly binds the GSK3 BIN2 and acts as an ATP competitor. Furthermore, bikinin inhibits the activity of six other Arabidopsis GSK3s. Genome-wide transcript analyses demonstrate that simultaneous inhibition of seven GSK3s is sufficient to activate BR responses. Our data suggest that GSK3 inhibition is the sole activation mode of BR signaling and argues against GSK3-independent BR responses in Arabidopsis. The opportunity to generate multiple and conditional knockouts in key regulators in the BR signaling pathway by bikinin represents a useful tool to further unravel regulatory mechanisms.


Plant Physiology | 2008

Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE Proteins Serve Brassinosteroid-Dependent and -Independent Signaling Pathways

Catherine Albrecht; Eugenia Russinova; Birgit Kemmerling; Mark Kwaaitaal; Sacco C. de Vries

The Arabidopsis (Arabidopsis thaliana) SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes belong to a small family of five plant receptor kinases that are involved in at least five different signaling pathways. One member of this family, BRASSINOSTEROID INSENSITIVE1 (BRI1)-ASSOCIATED KINASE1 (BAK1), also known as SERK3, is the coreceptor of the brassinolide (BR)-perceiving receptor BRI1, a function that is BR dependent and partially redundant with SERK1. BAK1 (SERK3) alone controls plant innate immunity, is also the coreceptor of the flagellin receptor FLS2, and, together with SERK4, can mediate cell death control, all three in a BR-independent fashion. SERK1 and SERK2 are essential for male microsporogenesis, again independent from BR. SERK5 does not appear to have any function under the conditions tested. Here, we show that the different SERK members are only redundant in pairs, whereas higher order mutant combinations only show additive phenotypes. Surprisingly, SERK members that are redundant within one are not redundant in another pathway. We also show that this evolution of functional pairs occurred by a change in protein function and not by differences in spatial expression. We propose that, in plants, closely related receptor kinases have a minimal homo- or heterodimeric configuration to achieve specificity.


Plant Physiology | 2009

CDKB1;1 Forms a Functional Complex with CYCA2;3 to Suppress Endocycle Onset

Véronique Boudolf; Tim Lammens; Joanna Boruc; Jelle Van Leene; Hilde Van Den Daele; Sara Maes; Gert Van Isterdael; Eugenia Russinova; Eva Kondorosi; Erwin Witters; Geert De Jaeger; Dirk Inzé; Lieven De Veylder

The mitosis-to-endocycle transition requires the controlled inactivation of M phase-associated cyclin-dependent kinase (CDK) activity. Previously, the B-type CDKB1;1 was identified as an important negative regulator of endocycle onset. Here, we demonstrate that CDKB1;1 copurifies and associates with the A2-type cyclin CYCA2;3. Coexpression of CYCA2;3 with CDKB1;1 triggered ectopic cell divisions and inhibited endoreduplication. Moreover, the enhanced endoreduplication phenotype observed after overexpression of a dominant-negative allele of CDKB1;1 could be partially complemented by CYCA2;3 co-overexpression, illustrating that both subunits unite in vivo to form a functional complex. CYCA2;3 protein stability was found to be controlled by CCS52A1, an activator of the anaphase-promoting complex. We conclude that CCS52A1 participates in endocycle onset by down-regulating CDKB1;1 activity through the destruction of CYCA2;3.


The Plant Cell | 2012

Boosting Crop Yields with Plant Steroids

Cécile Vriet; Eugenia Russinova; Christophe Reuzeau

Plant sterols and steroid hormones brassinosteroids (BRs) are essential for plant growth, reproduction, and plant response to various abiotic and biotic stresses. In this review, we discuss the potential and strategies for enhancing yield in crops by genetically altering sterol and BR metabolism and signaling or by exogenously applying BRs and known inhibitors of their pathways. Plant sterols and steroid hormones, the brassinosteroids (BRs), are compounds that exert a wide range of biological activities. They are essential for plant growth, reproduction, and responses to various abiotic and biotic stresses. Given the importance of sterols and BRs in these processes, engineering their biosynthetic and signaling pathways offers exciting potentials for enhancing crop yield. In this review, we focus on how alterations in components of sterol and BR metabolism and signaling or application of exogenous steroids and steroid inhibitors affect traits of agronomic importance. We also discuss areas for future research and identify the fine-tuning modulation of endogenous BR content as a promising strategy for crop improvement.


Nature Chemical Biology | 2012

Fluorescent castasterone reveals BRI1 signaling from the plasma membrane

Niloufer G. Irani; Simone Di Rubbo; Evelien Mylle; Jos Van den Begin; Joanna Schneider-Pizoń; Jaroslava Hniliková; Miroslav Šíša; Dieter Buyst; Josep Vilarrasa-Blasi; Anna-Mária Szatmári; Daniël Van Damme; Kiril Mishev; Mirela-Corina Codreanu; Ladislav Kohout; Miroslav Strnad; Ana I. Caño-Delgado; Jiří Friml; Annemieke Madder; Eugenia Russinova

Receptor-mediated endocytosis is an integral part of signal transduction as it mediates signal attenuation and provides spatial and temporal dimensions to signaling events. One of the best-studied leucine-rich repeat receptor-like kinases in plants, BRASSINOSTEROID INSENSITIVE 1 (BRI1), perceives its ligand, the brassinosteroid (BR) hormone, at the cell surface and is constitutively endocytosed. However, the importance of endocytosis for BR signaling remains unclear. Here we developed a bioactive, fluorescent BR analog, Alexa Fluor 647-castasterone (AFCS), and visualized the endocytosis of BRI1-AFCS complexes in living Arabidopsis thaliana cells. Impairment of endocytosis dependent on clathrin and the guanine nucleotide exchange factor for ARF GTPases (ARF-GEF) GNOM enhanced BR signaling by retaining active BRI1-ligand complexes at the plasma membrane. Increasing the trans-Golgi network/early endosome pool of BRI1-BR complexes did not affect BR signaling. Our findings provide what is to our knowledge the first visualization of receptor-ligand complexes in plants and reveal clathrin- and ARF-GEF-dependent endocytic regulation of BR signaling from the plasma membrane.

Collaboration


Dive into the Eugenia Russinova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sacco C. de Vries

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge