Eugenia Vasile
Politehnica University of Bucharest
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eugenia Vasile.
RSC Advances | 2014
Ioanna Savva; Andreas S. Kalogirou; Andrea Chatzinicolaou; Petri Papaphilippou; Athena Pantelidou; Eugeniu Vasile; Eugenia Vasile; Panayiotis A. Koutentis; Theodora Krasia-Christoforou
Palladium(0) (Pd) and copper(I) oxide (Cu2O) nanoparticles (NPs) were successfully embedded in electrospun polyvinylpyrrolidone (PVP) fibrous membranes. The fabrication process involved the synthesis of stable, PVP-capped Pd and Cu2O colloidal hybrid solutions in methanol that on subsequent electrospinning afforded PVP–Pd and PVP–Cu2O fibrous mats. The morphology of the as-prepared nanocomposite fibers was characterised using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM revealed the presence of bead-free, cylindrical fibers with diameters in the submicrometer range while TEM revealed the presence of spherical Pd and Cu2O NPs with diameters below 10 nm that were evenly distributed within the fibers. Thermal treatment of the PVP–Pd and the PVP–Cu2O membranes afforded crosslinked fibrous mats as supported by SEM. Furthermore, the presence of homogeneously distributed Pd and Cu2O NPs within the crosslinked polymer fibers was confirmed by HRTEM/EDX analyses. The above-mentioned nanocomposite fibers demonstrated high catalytic efficacy as heterogeneous catalytic supports in Heck, Suzuki (PVP–Pd) and click (PVP–Cu2O) reactions. Finally, the reusability of the membranes was briefly investigated with up to three consecutive runs being effective.
Stem Cells International | 2015
Bianca Galateanu; Mihaela-Cristina Bunea; Paul O. Stanescu; Eugenia Vasile; Angela Casarica; Horia Iovu; Anca Hermenean; Catalin Zaharia; Marieta Costache
The quality of life of patients with chronic wounds can be extremely poor and, therefore, over the past decades, great efforts have been made to develop efficient strategies to improve the healing process and the social impact associated with these conditions. Cell based therapy, as a modern tissue engineering strategy, involves the design of 3D cell-scaffold bioconstructs obtained by preseeding drug loaded scaffolds with undifferentiated cells in order to achieve in situ functional de novo tissue. This paper reports on the development of bionanocomposites based on bacterial cellulose and magnetic nanoparticles (magnetite) for efficient chronic wounds healing. Composites were obtained directly in the cellulose bacterial culture medium by dispersing various amounts of magnetite nanoparticles during the biosynthesis process. After purification and drying, the membranes were characterized by Raman spectroscopy and X-ray diffraction to reveal the presence of magnetite within the bacterial cellulose matrix. Morphological investigation was employed through SEM and TEM analyses on bionanocomposites. The biocompatibility of these innovative materials was studied in relation to human adipose derived stem cells in terms of cellular morphology, viability, and proliferation as well as scaffolds cytotoxic potential.
RSC Advances | 2015
Fotios Mpekris; Mariliz Achilleos; Eugenia Vasile; Eugeniu Vasile; Theodora Krasia-Christoforou; Triantafyllos Stylianopoulos
The mechanical properties of structurally-defined magnetoactive polymer (co)networks synthesized from well-defined poly(2-dimethylamino)ethyl methacrylate (poly(DMAEMA)) homopolymers and diblock copolymers of poly(DMAEMA) with the hydrophobic n-butyl methacrylate (BuMA) were measured in compression. Magnetic nanoparticle composition varied from 0 to 30% wt and caused a 6-fold increase in the Youngs modulus of the homopolymer networks (2.91 vs. 18.62 kPa) and a 12-fold increase in the modulus of diblock copolymer networks (0.76 vs. 9.1 kPa), with homopolymers being stiffer. Mathematical modeling revealed an exponential constitutive equation to predict accurately the mechanical response of the polymers. Furthermore, experiments were performed for the poroelastic behavior of the materials and their hydraulic conductivity was found to be independent of magnetic loading and network structure. In conclusion, the incorporation of magnetic nanoparticles strengthened the (co)network structure, while the synthetic approach employed for the DMAEMA-b-BuMA formation retained the linear, non-crosslinked architecture of BuMA, resulting in less stiff structures.
RSC Advances | 2018
Daniela F. Enache; Eugenia Vasile; Claudia Maria Simonescu; Daniela C. Culita; Eugeniu Vasile; Ovidiu Oprea; Andreea Madalina Pandele; Anca Razvan; Florina Dumitru; Gheorghe Nechifor
Three Schiff base-functionalized mesoporous silicas: MCM-41@salen, HMS-C12@salen and HMS-C16@salen have been synthesized by a post-synthetic grafting strategy and their sorption capacities toward Pb(II) from synthetic aqueous solutions have been assessed. FTIR spectra, TG/DSC analyses, X-ray powder diffraction, X-ray photoelectron spectroscopy (XPS), N2 adsorption isotherms and HRTEM micrographs were used to characterize the novel functionalized mesoporous silicas. The novel adsorbents have been tested for their capability in the remediation of synthetic aqueous systems containing Pb(II). The Langmuir maximum values of sorption capacities of these adsorbents toward Pb(II) are: 138.88 mg Pb(II) per g MCM-41@salen, 144.92 mg Pb(II) per g HMS-C12@salen, and 181.81 mg Pb(II) per g HMS-C16@salen, therefore, the functionalized silicas (MCM-41@salen, HMS-C12@salen, HMS-C16@salen) could be used as effective adsorbents of Pb(II) ions from wastewater.
Nanotechnology | 2017
Matthew Zervos; Eugenia Vasile; Eugeniu Vasile; Andreas Othonos
Core-shell PbS/Sn:In2O3 and branched PbIn2S4/Sn:In2O3 nanowires have been obtained via the deposition of Pb over Sn:In2O3 nanowires and post growth processing under H2S between 100 °C-200 °C and 300 °C-500 °C respectively. The PbS/Sn:In2O3 nanowires have diameters of 50-250 nm and consist of cubic PbS and In2O3 while the PbIn2S4/Sn:In2O3 nanowires consist of PbIn2S4 branches with diameters of 10-30 nm and an orthorhombic crystal structure. We discuss the growth mechanisms and also show that the density of electrons in the n-type Sn:In2O3 core is strongly dependent on the thickness of the p-type PbS shell, which must be smaller than 30 nm to prevent core depletion, via the self-consistent solution of the Poisson-Schrödinger equations in the effective mass approximation. The PbS/Sn:In2O3 and PbIn2S4/Sn:In2O3 nanowire networks had resistances of 100-200 Ω due to the large carrier densities and exhibited defect related photoluminescence at 2.2 eV and 1.5 eV respectively. We show that PbS in contact with polysulfide electrolyte has ohmic like behavior but the PbS/Sn:In2O3 nanowires gave, rectifying current voltage characteristics as a counter electrode in a quantum dot sensitized solar cell using a conventional ITO/TiO2/CdS/CdSe photo anode, an open circuit voltage of ≈0.5 V, and short circuit current density of ≈1 mA cm-2. In contrast the branched PbIn2S4/Sn:In2O3 nanowires exhibited a higher current carrying capability of ≈7 mA cm-2 and higher power conversion efficiency of ≈2%.
Frontiers in Pharmacology | 2017
Ionut-Cristian Radu; Ariana Hudita; Catalin Zaharia; Paul O. Stanescu; Eugenia Vasile; Horia Iovu; Miriana Stan; Octav Ginghina; Bianca Galateanu; Marieta Costache; Peter Langguth; Aristidis M. Tsatsakis; Kelly Velonia; Carolina Negrei
The aim of this study was to address one of the major challenges of the actual era of nanomedicine namely, the bioavailability of poorly water soluble drugs such as Silymarin. We developed new, biodegradable, and biocompatible nanosized shuttles for Silymarin targeted delivery in colon-cancer cells. The design of these 100 nm sized carrier nanoparticles was based on natural polymers and their biological properties such as cellular uptake potential, cytotoxicity and 3D penetrability were tested using a colon cancer cell line (HT-29) as the in vitro culture model. Comparative scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements demonstrated that the Silymarin loaded Poly(3-HydroxyButyrate-co-3-HydroxyValerate) (PHBHV) nanocarriers significantly decreased HT-29 cells viability after 6 and 24 h of treatment. Moreover, in vivo-like toxicity studies on multicellular tumor spheroids showed that the Silymarin loaded PHBHV nanocarriers are able to penetrate 3D micro tumors and significantly reduce their size.
Molecules | 2016
Ioanna Savva; Andreas S. Kalogirou; Mariliz Achilleos; Eugenia Vasile; Panayiotis A. Koutentis; Theodora Krasia-Christoforou
Electrospun nanocomposite fibers consisting of crosslinked polyvinylpyrrolidone (PVP) chains and gold nanoparticles (Au NPs) were fabricated, starting from highly stable PVP/Au NP colloidal solutions with different NP loadings, followed by thermal treatment. Information on the morphological characteristics of the fibers and of the embedded Au NPs was obtained by electron microscopy. Cylindrical, bead-free fibers were visualized by Scanning Electron Microscopy (SEM) while Transmission Electron Microscopy (TEM) and Energy Diffraction X-ray (EDX) analysis supported the presence of Au NPs within the fibers and gave information on their morphologies and average diameters. These materials were briefly evaluated as heterogeneous catalytic supports for the gold-catalyzed intramolecular cyclisation of 2‑(phenylethynyl)aniline to form 2-phenyl-1H-indole. The performance of the gold catalyst was strongly dependent on the Au NP size, with the system containing the smallest Au NPs being the more effective. Moreover, a slight drop of their catalytic efficiency was observed after three consecutive reaction runs, which was attributed to morphological changes as a consequence of fiber merging.
Archive | 2018
Bianca Galateanu; Ariana Hudita; Catalin Zaharia; Mihaela-Cristina Bunea; Eugenia Vasile; Mihaela-Ramona Buga; Marieta Costache
Among the naturally occurring fibers, silk occupies a special position due to its properties. Silk fibroins, the unique proteins of silkworm fibers, are highmolecular-weight block copolymers consisting of a heavy (~370 kDa) and a light (~26 kDa) chain with varying amphiphilicity linked by a single disulphide bond. Bombyx mori silk is the most characterized silkworm silk. Researchers have investigated fibroin as one of the promising resources of biotechnology and biomedical materials due to its other unique properties including excellent biocompatibility, favorable oxygen permeability, and outstanding biodegradability, and the degradation product can be readily absorbed by the body with minimal inflammatory reaction. Silk hydrogels have been thoroughly studied for potential biotechnological applications due to their mechanical properties, biocompatibility, controllable degradation rates, and self-assembly into β-sheet networks. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. This chapter offers overview of the recent developments in silk protein-based hydrogels, both of fibroin and sericin proteins. It describes the approaches for obtaining silk hydrogels and ideas to improve the existing properties or to incorporate new features in the hydrogels by making composites. Characterization tools and modern bioapplications of the silk hydrogels for tissue engineering and controlled release are also reviewed. A special focus is given to silk fibroin composite hydrogels for bone tissue engineering applications.
Composites Part B-engineering | 2015
Mariana Ionita; Eugenia Vasile; Livia Elena Crica; Stefan Ioan Voicu; Andreea Madalina Pandele; Sorina Dinescu; Loredana Predoiu; Bianca Galateanu; Anca Hermenean; Marieta Costache
Polymer Composites | 2013
Andreea Madalina Pandele; Sorina Dinescu; Marieta Costache; Eugenia Vasile; Cosmin Obreja; Horia Iovu; Mariana Ionita