Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugenio Azpeitia is active.

Publication


Featured researches published by Eugenio Azpeitia.


Developmental Dynamics | 2012

Hormone Symphony During Root Growth and Development

Adriana Garay-Arroyo; María de la Paz Sánchez; Berenice García-Ponce; Eugenio Azpeitia; Elena R. Álvarez-Buylla

Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradation. However, the activity of a given hormone is also dependent on its interaction with other hormones. Indeed, there is a complex crosstalk between hormones that regulates their biosynthesis, transport, and/or signaling functionality, although some hormones have overlapping or opposite functions. The plant root is a particularly useful system in which to study the complex role of plant hormones in the plastic control of plant development. Physiological, cellular, and molecular genetic approaches have been used to study the role of plant hormones in root meristem homeostasis. In this review, we discuss recent findings on the synthesis, signaling, transport of hormones and role during root development and examine the role of hormone crosstalk in maintaining homeostasis in the apical root meristem. Developmental Dynamics, 2012.


Seminars in Cell & Developmental Biology | 2010

From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches.

Elena R. Alvarez-Buylla; Eugenio Azpeitia; Rafael A. Barrio; Mariana Benítez; Pablo Padilla-Longoria

The ABC model postulates that expression combinations of three classes of genes (A, B and C) specify the four floral organs at early stages of flower development. This classic model provides a solid framework to study flower development and has been the foundation for multiple studies in different plant species, as well as for new evolutionary hypotheses. Nevertheless, it has been shown that in spite of being necessary, these three gene classes are not sufficient for flower organ specification. Rather, flower organ specification depends on complex interactions of several genes, and probably other non-genetic factors. Being useful to study systems of complex interactions, mathematical and computational models have enlightened the origin of the A, B and C stereotyped and robust expression patterns and the process of early flower morphogenesis. Here, we present a brief introduction to basic modeling concepts and techniques and review the results that these models have rendered for the particular case of the Arabidopsis thaliana flower organ specification. One of the main results is the uncovering of a robust functional module that is sufficient to recover the gene configurations characterizing flower organ primordia. Another key result is that the temporal sequence with which such gene configurations are attained may be recovered only by modeling the aforementioned functional module as a noisy or stochastic system. Finally, modeling approaches enable testable predictions regarding the role of non-genetic factors (noise, mechano-elastic forces, etc.) in development. These predictions, along with some perspectives for future work, are also reviewed and discussed.


BMC Systems Biology | 2010

Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

Eugenio Azpeitia; Mariana Benítez; Iliusi Vega; Carlos Villarreal; Elena R. Alvarez-Buylla

BackgroundRecent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN) and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN) models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner.ResultsWe found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks.ConclusionsThese models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not sufficient to fully reproduce root SCN organization and genetic profiles. We then highlight some experimental holes that remain to be studied and postulate some novel gene interactions. Finally, we suggest the existence of a generic dynamical motif that can be involved in both plant and animal SCN maintenance.


PLOS Computational Biology | 2013

Cell Patterns Emerge from Coupled Chemical and Physical Fields with Cell Proliferation Dynamics: The Arabidopsis thaliana Root as a Study System

Rafael A. Barrio; José Roberto Romero-Arias; Marco A. Noguez; Eugenio Azpeitia; Elizabeth Ortiz-Gutiérrez; Valeria Hernández-Hernández; Yuriria Cortes-Poza; Elena R. Alvarez-Buylla

A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of which are known to play a role in root development. We perform extensive numerical calculations that allow for quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to explicitly consider gene regulatory networks or to treat other developmental systems.


Frontiers in Plant Science | 2013

Finding Missing Interactions of the Arabidopsis thaliana Root Stem Cell Niche Gene Regulatory Network.

Eugenio Azpeitia; Nathan Weinstein; Mariana Benítez; Luis Mendoza; Elena R. Alvarez-Buylla

Over the last few decades, the Arabidopsis thaliana root stem cell niche (RSCN) has become a model system for the study of plant development and stem cell niche dynamics. Currently, many of the molecular mechanisms involved in RSCN maintenance and development have been described. A few years ago, we published a gene regulatory network (GRN) model integrating this information. This model suggested that there were missing components or interactions. Upon updating the model, the observed stable gene configurations of the RSCN could not be recovered, indicating that there are additional missing components or interactions in the model. In fact, due to the lack of experimental data, GRNs inferred from published data are usually incomplete. However, predicting the location and nature of the missing data is a not trivial task. Here, we propose a set of procedures for detecting and predicting missing interactions in Boolean networks. We used these procedures to predict putative missing interactions in the A. thaliana RSCN network model. Using our approach, we identified three necessary interactions to recover the reported gene activation configurations that have been experimentally uncovered for the different cell types within the RSCN: (1) a regulation of PHABULOSA to restrict its expression domain to the vascular cells, (2) a self-regulation of WOX5, possibly by an indirect mechanism through the auxin signaling pathway, and (3) a positive regulation of JACKDAW by MAGPIE. The procedures proposed here greatly reduce the number of possible Boolean functions that are biologically meaningful and experimentally testable and that do not contradict previous data. We believe that these procedures can be used on any Boolean network. However, because the procedures were designed for the specific case of the RSCN, formal demonstrations of the procedures should be shown in future efforts.


Molecular Plant | 2015

XAANTAL2 (AGL14) Is an Important Component of the Complex Gene Regulatory Network that Underlies Arabidopsis Shoot Apical Meristem Transitions

Rigoberto V. Pérez-Ruíz; Berenice García-Ponce; Nayelli Marsch-Martínez; Yamel Ugartechea-Chirino; Mitzi Villajuana-Bonequi; Stefan de Folter; Eugenio Azpeitia; Jose Davila-Velderrain; David Cruz-Sánchez; Adriana Garay-Arroyo; María de la Paz Sánchez; Juan M. Estévez-Palmas; Elena R. Álvarez-Buylla

In Arabidopsis thaliana, multiple genes involved in shoot apical meristem (SAM) transitions have been characterized, but the mechanisms required for the dynamic attainment of vegetative, inflorescence, and floral meristem (VM, IM, FM) cell fates during SAM transitions are not well understood. Here we show that a MADS-box gene, XAANTAL2 (XAL2/AGL14), is necessary and sufficient to induce flowering, and its regulation is important in FM maintenance and determinacy. xal2 mutants are late flowering, particularly under short-day (SD) condition, while XAL2 overexpressing plants are early flowering, but their flowers have vegetative traits. Interestingly, inflorescences of the latter plants have higher expression levels of LFY, AP1, and TFL1 than wild-type plants. In addition we found that XAL2 is able to bind the TFL1 regulatory regions. On the other hand, the basipetal carpels of the 35S::XAL2 lines lose determinacy and maintain high levels of WUS expression under SD condition. To provide a mechanistic explanation for the complex roles of XAL2 in SAM transitions and the apparently paradoxical phenotypes of XAL2 and other MADS-box (SOC1, AGL24) overexpressors, we conducted dynamic gene regulatory network (GRN) and epigenetic landscape modeling. We uncovered a GRN module that underlies VM, IM, and FM gene configurations and transition patterns in wild-type plants as well as loss and gain of function lines characterized here and previously. Our approach thus provides a novel mechanistic framework for understanding the complex basis of SAM development.


Methods of Molecular Biology | 2014

Gene Regulatory Network Models for Floral Organ Determination

Eugenio Azpeitia; Jose Davila-Velderrain; Carlos Villarreal; Elena R. Álvarez-Buylla

Understanding how genotypes map unto phenotypes implies an integrative understanding of the processes regulating cell differentiation and morphogenesis, which comprise development. Such a task requires the use of theoretical and computational approaches to integrate and follow the concerted action of multiple genetic and nongenetic components that hold highly nonlinear interactions. Gene regulatory network (GRN) models have been proposed to approach such task. GRN models have become very useful to understand how such types of interactions restrict the multi-gene expression patterns that characterize different cell-fates. More recently, such temporal single-cell models have been extended to recover the temporal and spatial components of morphogenesis. Since the complete genomic GRN is still unknown and intractable for any organism, and some clear developmental modules have been identified, we focus here on the analysis of well-curated and experimentally grounded small GRN modules. One of the first experimentally grounded GRN that was proposed and validated corresponds to the regulatory module involved in floral organ determination. In this chapter we use this GRN as an example of the methodologies involved in: (1) formalizing and integrating molecular genetic data into the logical functions (Boolean functions) that rule gene interactions and dynamics in a Boolean GRN; (2) the algorithms and computational approaches used to recover the steady-states that correspond to each cell type, as well as the set of initial GRN configurations that lead to each one of such states (i.e., basins of attraction); (3) the approaches used to validate a GRN model using wild type and mutant or overexpression data, or to test the robustness of the GRN being proposed; (4) some of the methods that have been used to incorporate random fluctuations in the GRN Boolean functions and enable stochastic GRN models to address the temporal sequence with which gene configurations and cell fates are attained; (5) the methodologies used to approximate discrete Boolean GRN to continuous systems and their use in further dynamic analyses. The methodologies explained for the GRN of floral organ determination developed here in detail can be applied to any other functional developmental module.


Frontiers in Plant Science | 2011

Dynamic Network-Based Epistasis Analysis: Boolean Examples

Eugenio Azpeitia; Mariana Benítez; Pablo Padilla-Longoria; Carlos Espinosa-Soto; Elena R. Alvarez-Buylla

In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches.


PLOS Computational Biology | 2015

A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle

Elizabeth Ortiz-Gutiérrez; Karla García-Cruz; Eugenio Azpeitia; Aaron Castillo; María de la Paz Sánchez; Elena R. Alvarez-Buylla

Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes.


Frontiers in Microbiology | 2015

Development of cell differentiation in the transition to multicellularity: a dynamical modeling approach

Emilio Mora Van Cauwelaert; Juan A. Arias Del Angel; Mariana Benítez; Eugenio Azpeitia

Multicellularity has emerged and continues to emerge in a variety of lineages and under diverse environmental conditions. In order to attain individuality and integration, multicellular organisms must exhibit spatial cell differentiation, which in turn allows cell aggregates to robustly generate traits and behaviors at the multicellular level. Nevertheless, the mechanisms that may lead to the development of cellular differentiation and patterning in emerging multicellular organisms remain unclear. We briefly review two conceptual frameworks that have addressed this issue: the cooperation-defection framework and the dynamical patterning modules (DPMs) framework. Then, situating ourselves in the DPM formalism first put forward by S. A. Newman and collaborators, we state a hypothesis for cell differentiation and arrangement in cellular masses of emerging multicellular organisms. Our hypothesis is based on the role of the generic cell-to-cell communication and adhesion patterning mechanisms, which are two fundamental mechanisms for the evolution of multicellularity, and whose molecules seem to be well-conserved in extant multicellular organisms and their unicellular relatives. We review some fundamental ideas underlying this hypothesis and contrast them with empirical and theoretical evidence currently available. Next, we use a mathematical model to illustrate how the mechanisms and assumptions considered in the hypothesis we postulate may render stereotypical arrangements of differentiated cells in an emerging cellular aggregate and may contribute to the variation and recreation of multicellular phenotypes. Finally, we discuss the potential implications of our approach and compare them to those entailed by the cooperation-defection framework in the study of cell differentiation in the transition to multicellularity.

Collaboration


Dive into the Eugenio Azpeitia's collaboration.

Top Co-Authors

Avatar

Elena R. Alvarez-Buylla

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Mariana Benítez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Luis Mendoza

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

David A. Rosenblueth

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Stalin Muñoz

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Carlos Villarreal

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Mariana Esther Martinez-Sanchez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

María de la Paz Sánchez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge