Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugenio Ferrari is active.

Publication


Featured researches published by Eugenio Ferrari.


Nature Photonics | 2012

Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet

E. Allaria; Roberto Appio; L.Badano; William A. Barletta; S.Bassanese; S. G. Biedron; A.O.Borga; E.Busetto; D. Castronovo; Paolo Cinquegrana; S. Cleva; D.Cocco; M.Cornacchia; P. Craievich; Ivan Cudin; G.D'Auria; M.Dal Forno; M.B. Danailov; R.De Monte; G.De Ninno; Paolo Delgiusto; Alexander Demidovich; S. Di Mitri; B. Diviacco; Alessandro Fabris; Riccardo Fabris; William M. Fawley; Mario Ferianis; Eugenio Ferrari; S.Ferry

Researchers demonstrate the FERMI free-electron laser operating in the high-gain harmonic generation regime, allowing high stability, transverse and longitudinal coherence and polarization control.


Nature Communications | 2013

Two-colour pump–probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser

E. Allaria; Filippo Bencivenga; Roberto Borghes; Flavio Capotondi; D. Castronovo; P. Charalambous; Paolo Cinquegrana; M.B. Danailov; G. De Ninno; Alexander Demidovich; S. Di Mitri; B. Diviacco; D. Fausti; William M. Fawley; Eugenio Ferrari; L. Froehlich; D. Gauthier; Alessandro Gessini; L. Giannessi; R. Ivanov; M. Kiskinova; Gabor Kurdi; B. Mahieu; N. Mahne; I. Nikolov; C. Masciovecchio; Emanuele Pedersoli; G. Penco; Lorenzo Raimondi; C. Serpico

Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.


Journal of Synchrotron Radiation | 2015

The FERMI free-electron lasers

E. Allaria; L. Badano; S. Bassanese; Flavio Capotondi; D. Castronovo; Paolo Cinquegrana; M.B. Danailov; G. D'Auria; Alexander Demidovich; R. De Monte; G. De Ninno; S. Di Mitri; B. Diviacco; William M. Fawley; Mario Ferianis; Eugenio Ferrari; G. Gaio; D. Gauthier; L. Giannessi; F. Iazzourene; Gabor Kurdi; N. Mahne; I. Nikolov; F. Parmigiani; G. Penco; Lorenzo Raimondi; P. Rebernik; Fabio Rossi; Eléonore Roussel; C. Scafuri

FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20 nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4 nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.


Nature Communications | 2016

Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

Eugenio Ferrari; C. Spezzani; Franck Fortuna; Renaud Delaunay; F. Vidal; I. Nikolov; Paolo Cinquegrana; B. Diviacco; D. Gauthier; G. Penco; Primož Rebernik Ribič; Eléonore Roussel; Marco Trovò; J.-B. Moussy; Tommaso Pincelli; Lounès Lounis; Michele Manfredda; Emanuele Pedersoli; Flavio Capotondi; Cristian Svetina; N. Mahne; Marco Zangrando; Lorenzo Raimondi; Alexander Demidovich; L. Giannessi; Giovanni De Ninno; M.B. Danailov; E. Allaria; Maurizio Sacchi

The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.


Optics Express | 2013

Two-colour generation in a chirped seeded free-electron laser: a close look

Benoı̂t Mahieu; E. Allaria; D. Castronovo; M.B. Danailov; Alexander Demidovich; Giovanni De Ninno; Simone Di Mitri; William M. Fawley; Eugenio Ferrari; Lars Fröhlich; D. Gauthier; L. Giannessi; N. Mahne; G. Penco; Lorenzo Raimondi; S. Spampinati; C. Spezzani; Cristian Svetina; M. Trovo; Marco Zangrando

We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.


Nature Communications | 2015

Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser

Giovanni De Ninno; D. Gauthier; B. Mahieu; Primož Rebernik Ribič; E. Allaria; Paolo Cinquegrana; Miltcho Bojanov Danailov; Alexander Demidovich; Eugenio Ferrari; L. Giannessi; G. Penco; P. Sigalotti; Matija Stupar

Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste.


Physical Review Letters | 2015

Spectrotemporal Shaping of Seeded Free-Electron Laser Pulses

D. Gauthier; Primož Rebernik Ribič; Giovanni De Ninno; E. Allaria; Paolo Cinquegrana; M.B. Danailov; Alexander Demidovich; Eugenio Ferrari; L. Giannessi; B. Mahieu; G. Penco

We demonstrate the ability to control and shape the spectrotemporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectrotemporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows us to retrieve the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility of tailoring the spectrotemporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to x-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.


Physical Review Letters | 2011

Coherent light with tunable polarization from single-pass free-electron lasers.

Spezzani C; E. Allaria; Coreno M; Diviacco B; Eugenio Ferrari; Geloni G; Karantzoulis E; Mahieu B; Vento M; De Ninno G

Tunable polarization over a wide spectral range is a required feature of light sources employed to investigate the properties of local symmetry in matter. In this Letter, we provide the first experimental characterization of the polarization of the harmonic light produced by a free-electron laser and demonstrate a method to obtain free-electron laser harmonics with tunable polarization. Experimental results are successfully compared with theory. Our findings can be expected to have a deep impact on the design and realization of experiments requiring full control of light polarization.


Nature Communications | 2016

Chirped pulse amplification in an extreme-ultraviolet free-electron laser

D. Gauthier; E. Allaria; M. Coreno; Ivan Cudin; Hugo Dacasa; M.B. Danailov; Alexander Demidovich; Simone Di Mitri; B. Diviacco; Eugenio Ferrari; P. Finetti; Fabio Frassetto; D. Garzella; S. Künzel; Vincent Leroux; B. Mahieu; N. Mahne; Michael Meyer; T. Mazza; Paolo Miotti; G. Penco; Lorenzo Raimondi; Primož Rebernik Ribič; R. Richter; Eléonore Roussel; Sebastian Schulz; Luca Sturari; Cristian Svetina; M. Trovo; Paul Andreas Walker

Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3–4.4 nm).


Scientific Reports | 2015

Single Shot Polarization Characterization of XUV FEL Pulses from Crossed Polarized Undulators

Eugenio Ferrari; E. Allaria; Jens Buck; G. De Ninno; B. Diviacco; D. Gauthier; L. Giannessi; Leif Glaser; Zhirong Huang; M. Ilchen; G. Lambert; A.A.Lutman; B. Mahieu; G. Penco; C. Spezzani; Jens Viefhaus

Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We investigate the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

Collaboration


Dive into the Eugenio Ferrari's collaboration.

Top Co-Authors

Avatar

E. Allaria

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.B. Danailov

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

G. Penco

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

L. Giannessi

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

B. Diviacco

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

William M. Fawley

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Giovanni De Ninno

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Paolo Cinquegrana

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

D. Gauthier

Elettra Sincrotrone Trieste

View shared research outputs
Researchain Logo
Decentralizing Knowledge