Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugenio Gaudio is active.

Publication


Featured researches published by Eugenio Gaudio.


Hepatology | 2011

Human hepatic stem cell and maturational liver lineage biology.

Rachael Turner; Oswaldo Lozoya; Yunfang Wang; Vincenzo Cardinale; Eugenio Gaudio; Gianfranco Alpini; Gemma Mendel; Eliane Wauthier; Claire Barbier; Domenico Alvaro; Lola M. Reid

Livers are comprised of maturational lineages of cells beginning extrahepatically in the hepato‐pancreatic common duct near the duodenum and intrahepatically in zone 1 by the portal triads. The extrahepatic stem cell niches are the peribiliary glands deep within the walls of the bile ducts; those intrahepatically are the canals of Hering in postnatal livers and that derive from ductal plates in fetal livers. Intrahepatically, there are at least eight maturational lineage stages from the stem cells in zone 1 (periportal), through the midacinar region (zone 2), to the most mature cells and apoptotic cells found pericentrally in zone 3. Those found in the biliary tree are still being defined. Parenchymal cells are closely associated with lineages of mesenchymal cells, and their maturation is coordinated. Each lineage stage consists of parenchymal and mesenchymal cell partners distinguishable by their morphology, ploidy, antigens, biochemical traits, gene expression, and ability to divide. They are governed by changes in chromatin (e.g., methylation), gradients of paracrine signals (soluble factors and insoluble extracellular matrix components), mechanical forces, and feedback loop signals derived from late lineage cells. Feedback loop signals, secreted by late lineage stage cells into bile, flow back to the periportal area and regulate the stem cells and other early lineage stage cells in mechanisms dictating the size of the liver mass. Recognition of maturational lineage biology and its regulation by these multiple mechanisms offers new understandings of liver biology, pathologies, and strategies for regenerative medicine and treatment of liver cancers. (HEPATOLOGY 2011;)


Hepatology | 2011

Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets

Vincenzo Cardinale; Yunfang Wang; Guido Carpino; Cai Bin Cui; Manuela Gatto; M. Rossi; Pasquale Berloco; Alfredo Cantafora; Eliane Wauthier; Mark E. Furth; Luca Inverardi; Juan Domínguez-Bendala; Camillo Ricordi; David A. Gerber; Eugenio Gaudio; Domenico Alvaro; Lola M. Reid

Multipotent stem/progenitors are present in peribiliary glands of extrahepatic biliary trees from humans of all ages and in high numbers in hepato‐pancreatic common duct, cystic duct, and hilum. They express endodermal transcription factors (e.g., Sox9, SOX17, FOXA2, PDX1, HES1, NGN3, PROX1) intranuclearly, stem/progenitor surface markers (EpCAM, NCAM, CD133, CXCR4), and sometimes weakly adult liver, bile duct, and pancreatic genes (albumin, cystic fibrosis transmembrane conductance regulator [CFTR], and insulin). They clonogenically expand on plastic and in serum‐free medium, tailored for endodermal progenitors, remaining phenotypically stable as undifferentiated cells for months with a cell division initially every ≈36 hours and slowing to one every 2‐3 days. Transfer into distinct culture conditions, each comprised of a specific mix of hormones and matrix components, yields either cords of hepatocytes (express albumin, CYP3A4, and transferrin), branching ducts of cholangiocytes (expressing anion exchanger‐2‐AE2 and CFTR), or regulatable C‐peptide secreting neoislet‐like clusters (expressing glucagon, insulin) and accompanied by changes in gene expression correlating with the adult fate. Transplantation into quiescent livers of immunocompromised mice results in functional human hepatocytes and cholangiocytes, whereas if into fat pads of streptozocin‐induced diabetic mice, results in functional islets secreting glucose‐regulatable human C‐peptide. Conclusion: The phenotypes and availability from all age donors suggest that these stem/progenitors have considerable potential for regenerative therapies of liver, bile duct, and pancreatic diseases including diabetes. (HEPATOLOGY2011;)


Digestive and Liver Disease | 2010

Cholangiocarcinoma: Update and future perspectives

Manuela Gatto; Maria Consiglia Bragazzi; R. Semeraro; Cristina Napoli; R. Gentile; A. Torrice; Eugenio Gaudio; Domenico Alvaro

Cholangiocarcinoma is commonly considered a rare cancer. However, if we consider the hepato-biliary system a single entity, cancers of the gallbladder, intra-hepatic and extra-hepatic biliary tree altogether represent approximately 30% of the total with incidence rates close to that of hepatocellular carcinoma, which is the third most common cause of cancer-related death worldwide. In addition, cholangiocarcinoma is characterized by a very poor prognosis and virtually no response to chemotherapeutics; radical surgery, the only effective treatment, is not frequently applicable because late diagnosis. Biomarkers for screening programs and for follow-up of categories at risk are under investigation, however, currently none of the proposed markers has reached clinical application. For all these considerations, cancers of the biliary tree system should merit much more scientific attention also because a progressive increase in incidence and mortality for these cancers has been reported worldwide. This manuscript deals with the most recent advances in the epidemiology, biology and clinical presentation of cholangiocarcinoma.


Journal of Anatomy | 2012

Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages

Guido Carpino; Vincenzo Cardinale; Paolo Onori; Antonio Franchitto; Pasquale Berloco; M. Rossi; Yunfang Wang; R. Semeraro; Maurizio M. Anceschi; Roberto Brunelli; Domenico Alvaro; Lola M. Reid; Eugenio Gaudio

Stem/progenitors have been identified intrahepatically in the canals of Hering and extrahepatically in glands of the biliary tree. Glands of the biliary tree (peribiliary glands) are tubulo‐alveolar glands with mucinous and serous acini, located deep within intrahepatic and extrahepatic bile ducts. We have shown that biliary tree stem/progenitors (BTSCs) are multipotent, giving rise in vitro and in vivo to hepatocytes, cholangiocytes or pancreatic islets. Cells with the phenotype of BTSCs are located at the bottom of the peribiliary glands near the fibromuscular layer. They are phenotypically heterogeneous, expressing transcription factors as well as surface and cytoplasmic markers for stem/progenitors of liver (e.g. SOX9/17), pancreas (e.g. PDX1) and endoderm (e.g. SOX17, EpCAM, NCAM, CXCR4, Lgr5, OCT4) but not for mature markers (e.g. albumin, secretin receptor or insulin). Subpopulations co‐expressing liver and pancreatic markers (e.g. PDX1+/SOX17+) are EpCAM+/−, and are assumed to be the most primitive of the BTSC subpopulations. Their descendants undergo a maturational lineage process from the interior to the surface of ducts and vary in the mature cells generated: pancreatic cells in hepatopancreatic ducts, liver cells in large intrahepatic bile ducts, and bile duct cells along most of the biliary tree. We hypothesize that there is ongoing organogenesis throughout life, with BTSCs giving rise to hepatic stem cells in the canals of Hering and to committed progenitors within the pancreas. The BTSCs are likely to be central to normal tissue turnover and injury repair and to be key elements in the pathophysiology of liver, pancreas and biliary tree diseases, including oncogenesis.


Expert Reviews in Molecular Medicine | 2009

Cholangiocyte proliferation and liver fibrosis

Shannon Glaser; Eugenio Gaudio; Timothy D. Miller; Domenico Alvaro; Gianfranco Alpini

Cholangiocyte proliferation is triggered during extrahepatic bile duct obstruction induced by bile duct ligation, which is a common in vivo model used for the study of cholangiocyte proliferation and liver fibrosis. The proliferative response of cholangiocytes during cholestasis is regulated by the complex interaction of several factors, including gastrointestinal hormones, neuroendocrine hormones and autocrine or paracrine signalling mechanisms. Activation of biliary proliferation (ductular reaction) is thought to have a key role in the initiation and progression of liver fibrosis. The first part of this review provides an overview of the primary functions of cholangiocytes in terms of secretin-stimulated bicarbonate secretion--a functional index of cholangiocyte growth. In the second section, we explore the important regulators, both inhibitory and stimulatory, that regulate the cholangiocyte proliferative response during cholestasis. We discuss the role of proliferating cholangiocytes in the induction of fibrosis either directly via epithelial mesenchymal transition or indirectly via the activation of other liver cell types. The possibility of targeting cholangiocyte proliferation as potential therapy for reducing and/or preventing liver fibrosis, and future avenues for research into how cholangiocytes participate in the process of liver fibrogenesis are described.


Nature Reviews Gastroenterology & Hepatology | 2016

Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)

Jesus M. Banales; Vincenzo Cardinale; Guido Carpino; Marco Marzioni; Jesper B. Andersen; Pietro Invernizzi; Guro E. Lind; Trine Folseraas; Stuart J. Forbes; Laura Fouassier; Andreas Geier; Diego F. Calvisi; Joachim C. Mertens; Michael Trauner; Antonio Benedetti; Luca Maroni; Javier Vaquero; Rocio I.R. Macias; Chiara Raggi; M.J. Perugorria; Eugenio Gaudio; Kirsten Muri Boberg; Jose J.G. Marin; Domenico Alvaro

Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the “European Network for the Study of Cholangiocarcinoma” (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.


Digestive Diseases and Sciences | 2002

Increased proliferation and apoptosis of colonic epithelial cells in dextran sulfate sodium-induced colitis in rats

Antonella Vetuschi; Giovanni Latella; Roberta Sferra; R. Caprilli; Eugenio Gaudio

We have evaluated morphologic alterations and epithelial cell apoptosis and proliferation of colonic mucosa in the acute and chronic phases of DSS-induced colitis. Colitis was induced in Sprague-Dawley rats by 7 days of 4% DSS oral administration followed by 7 days of tap water for one, two, and three cycles. Control rats receved tap water only. Morphological changes in colonic mucosa were evaluated and scored by light and scanning electron microscopy. Apoptosis was studied by TUNEL assay and cell proliferation by Ki-67 immunoreaction. The expression of both proapoptotic (Fas, FasL, Bax, p53) and antiapoptotic (Bcl2) cellular proteins was determined by immunohistochemistry. Morphologic assessment showed the most severe colonic epithelial lesions and inflammation in the distal colon with a trend to increasing severity from the first to the third DSS cycle. In DSS rats, the epithelial apoptotic index increased 20-fold after the first cycle and 120-fold after the second and third cycles compared with the controls; in the same way, the expression index of proapoptotic proteins (Fas, FasL, Bax, p53) dramatically increased. The proliferative index increased about 40 to 60-fold compared to controls, with no difference among the three DSS cycles. In conclusion, DSS-induced colitis in rats, which has many structural and ultrastructural features similar to those seen in human ulcerative colitis, is a suitable model for studying increased epithelial apoptosis and proliferation. Further studies employing this model will permitt two hypotheses to be tested. (1) Increased apoptosis may lead to a breakdown of the epithelial barrier function and facilitate the mucosal invasion of intraluminal microorganisms and/or antigens. (2) Abnormal and persistent epithelial hyperproliferation could be causally related to the development of colorectal cancers in the setting of chronic colonic inflammation.


Digestive and Liver Disease | 2009

New insights into liver stem cells

Eugenio Gaudio; Guido Carpino; Vincenzo Cardinale; Antonio Franchitto; Paolo Onori; D. Alvaro

Hepatic progenitor cells are bi-potential stem cells residing in human and animal livers that are able to differentiate towards the hepatocytic and the cholangiocytic lineages. In adult livers, hepatic progenitor cells are quiescent stem cells with a low proliferating rate, representing a reserve compartment that is activated only when the mature epithelial cells of the liver are continuously damaged or inhibited in their replication, or in cases of severe cell loss. Hepatic progenitor cell activation has been described in various acute and chronic liver diseases. Their niche is composed by numerous cells such as Hepatic Stellate Cells, endothelial cells, hepatocytes, cholangiocytes, Kupffer cells, pit cells and inflammatory cells. All these cells, numerous hormones and growth factors could interact and cross-talk with progenitor cells influencing their proliferative and differentiative processes. Hepatic progenitor cells and their niche could represent, in the near future, a target for therapeutic approaches to liver disease based on cell-specific drug delivery systems. Isolation and transplantation of hepatic progenitor cells could represent a new approach for therapy of end-stage chronic liver diseases, as they offer many advantages to transplantation of mature hepatocytes. The possibility of applying stem cell therapy to liver diseases will represent a major goal in this field.


Gastroenterology | 1996

Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis: A morphological study

Eugenio Gaudio; Paolo Onori; Luigi Pannarale; Domenico Alvaro

BACKGROUND & AIMS The peribiliary plexus plays a fundamental role in supporting the secretory and absorptive functions of biliary epithelium. Little information is available on the rearrangement of the peribiliary plexus during conditions associated with ductular proliferation. This study investigated the chronological modulation of bile duct and peribiliary plexus proliferation after common bile duct ligation in the rat. METHODS Light microscopy and scanning electron microscopy vascular corrosion cast technique was used to study the architecture of the peribiliary plexus in rats with 1, 2, and 4 weeks of common bile duct ligation or in sham-operated controls. RESULTS After 1 week of common bile duct ligation, no evident change of hepatic microvasculature was observed despite significant proliferation of bile ducts. After 2 and 4 weeks, significant microvasculature proliferation was observed extending from the peribiliary plexus of bile tracts. Vascular proliferation coincides with the extension of portal tract connective tissue. No evidence of vascular proliferation or other morphological modifications was present at the level of sinusoids around the portal tracts. CONCLUSIONS After common bile duct ligation, the peribillary plexus undergoes marked proliferation, thus supporting the increased nutritional and functional demands from the proliferated bile ductal system. However, the proliferation of the peribillary plexus only occurs after that of the bile ductal system.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Isoform-specific monoubiquitination, endocytosis, and degradation of alternatively spliced ErbB4 isoforms

Maria Sundvall; Anna Korhonen; Ilkka Paatero; Eugenio Gaudio; Gerry Melino; Carlo M. Croce; Rami I. Aqeilan; Klaus Elenius

Endocytosis and subsequent lysosomal degradation serve as a well characterized mechanism to fine-tune and down-regulate EGFR signaling. However, other members of the EGFR/ErbB receptor family have been reported to be endocytosis-impaired. Here we demonstrate that endocytosis of ErbB4 is regulated in an isoform-specific manner: CYT-1 isoforms were efficiently endocytosed whereas CYT-2 isoforms were endocytosis-impaired. CYT-1 isoforms in endocytic vesicles colocalized with Rab5 and Rab7 indicating trafficking via early endosomes to late endosomal/lysosomal structures. A PPXY motif within the CYT-1-specific sequence that lacks from CYT-2 was necessary both for ubiquitination and endocytosis of CYT-1 isoforms and provided a binding site for a WW domain-containing ubiquitin ligase Itch. Itch catalyzed ubiquitination of ErbB4 CYT-1, promoted its localization into intracellular vesicles, and stimulated degradation of ErbB4 CYT-1. Dominant negative Itch suppressed ErbB4 CYT-1 endocytosis and degradation. These data indicate that ErbB4 isoforms differ in endocytosis and degradation by a mechanism mediated by CYT-1-specific PPXY motif interacting with a WW domain-containing E3 ubiquitin ligase.

Collaboration


Dive into the Eugenio Gaudio's collaboration.

Top Co-Authors

Avatar

Paolo Onori

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Domenico Alvaro

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Guido Carpino

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Antonio Franchitto

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Cardinale

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Romina Mancinelli

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge