Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugenio Rastelli is active.

Publication


Featured researches published by Eugenio Rastelli.


Science Advances | 2016

Virus-mediated archaeal hecatomb in the deep seafloor

Roberto Danovaro; Antonio Dell'Anno; Cinzia Corinaldesi; Eugenio Rastelli; Ricardo Cavicchioli; Mart Krupovic; Rachel T. Noble; Takuro Nunoura; David Prangishvili

Viruses cause the mortality of a large fraction of deep-sea benthic archaea, thereby influencing overall ecosystem functions. Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles.


Environmental Microbiology Reports | 2013

Patterns and drivers of bacterial α‐ and β‐diversity across vertical profiles from surface to subsurface sediments

Gian Marco Luna; Cinzia Corinaldesi; Eugenio Rastelli; Roberto Danovaro

We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems.


Frontiers in Microbiology | 2015

Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus–prokaryote interactions and functions

Eugenio Rastelli; Cinzia Corinaldesi; Antonio Dell'Anno; Teresa Amaro; Ana M. Queirós; Stephen Widdicombe; Roberto Danovaro

Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning, and human life. Among the proposed mitigation strategies, CO2 capture and storage, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus–host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality (VIPM). We found that exposure to levels of CO2 in the overlying seawater from 1,000 to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of VIPM, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems.


Frontiers in Microbiology | 2016

Quantification of Viral and Prokaryotic Production Rates in Benthic Ecosystems: A Methods Comparison

Eugenio Rastelli; Antonio Dell’Anno; Cinzia Corinaldesi; Mathias Middelboe; Rachel T. Noble; Roberto Danovaro

Viruses profoundly influence benthic marine ecosystems by infecting and subsequently killing their prokaryotic hosts, thereby impacting the cycling of carbon and nutrients. Previously conducted studies, based on different methodologies, have provided widely differing estimates of the relevance of viruses on benthic prokaryotes. There has been no attempt so far to compare these independent approaches, including contextual comparisons among different approaches for sample manipulation (i.e., dilution or not of the sediments during incubations), between methods based on epifluorescence microscopy (EFM) or radiotracers, and between the use of different radiotracers. Therefore, it has been difficult to identify the most suitable methodologies and protocols to be used as standard approaches for the quantification of viral infections of prokaryotes. Here, we compared for the first time different methods for determining viral and prokaryotic production rates in marine sediments collected at two benthic sites, differing in depth and environmental conditions. We used a highly replicated experimental design, testing the potential biases associated to the incubation of sediments as diluted or undiluted. In parallel, we also compared EFM counts with the 3H-thymidine incubations for the determination of viral production rates, and the use of 3H-thymidine versus 3H-leucine radiotracers for the determination of prokaryotic production. We show here that, independent from sediment dilution, EFM-based values of viral production ranged from 1.4 to 4.6 × 107 viruses g-1 h-1, and were similar but overall less variable compared to those obtained by the 3H-thymidine method (0.3 to 9.0 × 107 viruses g-1h-1). In addition, the prokaryotic production rates were not affected by sediment dilution, and the use of different radiotracers provided very consistent estimates (10.3–35.1 and 9.3–34.6 ngC g-1h-1 using the 3H-thymidine or 3H-leucine method, respectively). These results indicated that viral lysis was responsible for the abatement of 55–81% of the prokaryotic heterotrophic production, corroborating previous findings of the major role of viruses in benthic deep-sea ecosystems. Moreover, our methodological comparison for the analysis of viral production in marine sediments suggests that microscopy-based approaches are simpler and more cost-effective than those based on radiotracers. These approaches also reduce time to results and overcome issues related to generation of radioactive waste.


F1000Research | 2017

Marine archaea and archaeal viruses under global change

Roberto Danovaro; Eugenio Rastelli; Cinzia Corinaldesi; Michael Tangherlini; Antonio Dell'Anno

Global change is altering oceanic temperature, salinity, pH, and oxygen concentration, directly and indirectly influencing marine microbial food web structure and function. As microbes represent >90% of the ocean’s biomass and are major drivers of biogeochemical cycles, understanding their responses to such changes is fundamental for predicting the consequences of global change on ecosystem functioning. Recent findings indicate that marine archaea and archaeal viruses are active and relevant components of marine microbial assemblages, far more abundant and diverse than was previously thought. Further research is urgently needed to better understand the impacts of global change on virus–archaea dynamics and how archaea and their viruses can interactively influence the ocean’s feedbacks on global change.


Environmental Microbiology | 2016

Enhanced viral activity and dark CO2 fixation rates under oxygen depletion: the case study of the marine Lake Rogoznica.

Eugenio Rastelli; Cinzia Corinaldesi; Bruna Petani; Antonio Dell'Anno; Irena Ciglenečki; Roberto Danovaro

Global change is determining the expansion of marine oxygen-depleted zones, which are hot spots of microbial-driven biogeochemical processes. However, information on the functioning of the microbial assemblages and the role of viruses in such low-oxygen systems remains largely unknown. Here, we used the marine Rogoznica Lake as a natural model to investigate the possible consequences of oxygen depletion on virus-prokaryote interactions and prokaryotic metabolism in pelagic and benthic ecosystems. We found higher bacterial and archaeal abundances in oxygen-depleted than in oxic conditions, associated with higher heterotrophic carbon production, enzymatic activities and dark inorganic carbon fixation (DCF) rates. The oxygen-depleted systems were also characterized by higher viral abundance, production and virus-induced prokaryotic mortality. The highest DCF relative contribution to the whole total C production (> 30%) was found in oxygen-depleted systems, at the highest virus-induced prokaryotic mortality values (> 90%). Our results suggest that the higher rates of viral lysis in oxygen-depleted conditions can significantly enhance DCF by accelerating heterotrophic processes, organic matter cycling, and hence the supply of inorganic reduced compounds fuelling chemosynthesis. These findings suggest that the expansion of low-oxygen zones can trigger higher viral impacts on prokaryotic heterotrophic and chemoautotrophic metabolism, with cascading effects, neglected so far, on biogeochemical processes.


Environmental Microbiology | 2017

High potential for temperate viruses to drive carbon cycling in chemoautotrophy‐dominated shallow‐water hydrothermal vents

Eugenio Rastelli; Cinzia Corinaldesi; Antonio Dell'Anno; Michael Tangherlini; Eleonora Martorelli; Michela Ingrassia; Francesco Latino Chiocci; Marco Lo Martire; Roberto Danovaro

Viruses are the most abundant life forms in the worlds oceans and they are key drivers of biogeochemical cycles, but their impact on the microbial assemblages inhabiting hydrothermal vent ecosystems is still largely unknown. Here, we analysed the viral life strategies and virus-host interactions in the sediments of a newly discovered shallow-water hydrothermal field of the Mediterranean Sea. Our study reveals that temperate viruses, once experimentally induced to replicate, can cause large mortality of vent microbes, significantly reducing the chemoautotrophic carbon production, while enhancing the metabolism of microbial heterotrophs and the re-cycling of the organic matter. These results provide new insights on the factors controlling primary and secondary production processes in hydrothermal vents, suggesting that the inducible provirus-host interactions occurring in these systems can profoundly influence the functioning of the microbial food web and the efficiency in the energy transfer to the higher trophic levels.


Scientific Reports | 2017

Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach

Eugenio Rastelli; Cinzia Corinaldesi; Antonio Dell’Anno; Marco Lo Martire; Silvestro Greco; M. C. Facchini; M. Rinaldi; Colin O’Dowd; Darius Ceburnis; Roberto Danovaro

Surface ocean bubble-bursting generates aerosols composed of microscopic salt-water droplets, enriched in marine organic matter. The organic fraction profoundly influences aerosols’ properties, by scattering solar radiations and nucleating water particles. Still little is known on the biochemical and microbiological composition of these organic particles. In the present study, we experimentally simulated the bursting of bubbles at the seawater surface of the North-Eastern Atlantic Ocean, analysing the organic materials and the diversity of the bacteria in the source-seawaters and in the produced aerosols. We show that, compared with seawater, the sub-micron aerosol particles were highly enriched in organic matter (up to 140,000x for lipids, 120,000x for proteins and 100,000x for carbohydrates). Also DNA, viruses and prokaryotes were significantly enriched (up to 30,000, 250 and 45x, respectively). The relative importance of the organic components in the aerosol did not reflect those in the seawater, suggesting their selective transfer. Molecular analyses indicate the presence of selective transfers also for bacterial genotypes, highlighting higher contribution of less abundant seawater bacterial taxa to the marine aerosol. Overall, our results open new perspectives in the study of microbial dispersal through marine aerosol and provide new insights for a better understanding of climate-regulating processes of global relevance.


Scientific Reports | 2018

Impact of mangrove forests degradation on biodiversity and ecosystem functioning

Laura Carugati; Beatrice Gatto; Eugenio Rastelli; Marco Lo Martire; Caterina Coral; Silvestro Greco; Roberto Danovaro

Mangroves are amongst the most productive marine ecosystems on Earth, providing a unique habitat opportunity for many species and key goods and services for human beings. Mangrove habitats are regressing at an alarming rate, due to direct anthropogenic impacts and global change. Here, in order to assess the effects of mangrove habitat degradation on benthic biodiversity and ecosystem functioning, we investigated meiofaunal biodiversity (as proxy of benthic biodiversity), benthic biomass and prokaryotic heterotrophic production (as proxies of ecosystem functioning) and trophic state in a disturbed and an undisturbed mangrove forests. We report here that disturbed mangrove area showed a loss of 20% of benthic biodiversity, with the local extinction of four Phyla (Cladocera, Kynorincha, Priapulida, Tanaidacea), a loss of 80% of microbial-mediated decomposition rates, of the benthic biomass and of the trophic resources. The results of this study strengthen the need to preserve mangrove forests and to restore those degraded to guarantee the provision of goods and services needed to support the biodiversity and functioning of wide portions of tropical ecosystems.


Marine Pollution Bulletin | 2018

Effects of sub-seabed CO2 leakage: Short- and medium-term responses of benthic macrofaunal assemblages

Teresa Amaro; Iacopo Bertocci; Ana M. Queirós; Eugenio Rastelli; Gunhild Borgersen; Marijana Stenrud Brkljacic; Joana Nunes; K. Sorensen; Roberto Danovaro; Stephen Widdicombe

The continued rise in atmospheric carbon dioxide (CO2) levels is driving climate change and temperature shifts at a global scale. CO2 Capture and Storage (CCS) technologies have been suggested as a feasible option for reducing CO2 emissions and mitigating their effects. However, before CCS can be employed at an industrial scale, any environmental risks associated with this activity should be identified and quantified. Significant leakage of CO2 from CCS reservoirs and pipelines is considered to be unlikely, however direct and/or indirect effects of CO2 leakage on marine life and ecosystem functioning must be assessed, with particular consideration given to spatial (e.g. distance from the source) and temporal (e.g. duration) scales at which leakage impacts could occur. In the current mesocosm experiment we tested the potential effects of CO2 leakage on macrobenthic assemblages by exposing infaunal sediment communities to different levels of CO2 concentration (400, 1000, 2000, 10,000 and 20,000 ppm CO2), simulating a gradient of distance from a hypothetic leakage, over short-term (a few weeks) and medium-term (several months). A significant impact on community structure, abundance and species richness of macrofauna was observed in the short-term exposure. Individual taxa showed idiosyncratic responses to acidification. We conclude that the main impact of CO2 leakage on macrofaunal assemblages occurs almost exclusively at the higher CO2 concentration and over short time periods, tending to fade and disappear at increasing distance and exposure time. Although under the cautious perspective required by the possible context-dependency of the present findings, this study contributes to the cost-benefit analysis (environmental risk versus the achievement of the intended objectives) of CCS strategies.

Collaboration


Dive into the Eugenio Rastelli's collaboration.

Top Co-Authors

Avatar

Roberto Danovaro

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Cinzia Corinaldesi

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Antonio Dell'Anno

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Marco Lo Martire

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Antonio Dell’Anno

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Teresa Amaro

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Ana M. Queirós

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Tangherlini

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Silvestro Greco

Stazione Zoologica Anton Dohrn

View shared research outputs
Researchain Logo
Decentralizing Knowledge