Euiyoung Bae
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Euiyoung Bae.
Journal of Biological Chemistry | 2004
Euiyoung Bae; George N. Phillips
The crystal structures of adenylate kinases from the psychrophile Bacillus globisporus and the mesophile Bacillus subtilis have been solved and compared with that from the thermophile Bacillus stearothermophilus. This is the first example we know of where a trio of protein structures has been solved that have the same number of amino acids and a high level of identity (66–74%) and yet come from organisms with different operating temperatures. The enzymes were characterized for their own thermal denaturation and inactivation, and they exhibited the same temperature preferences as their source organisms. The structures of the three highly homologous, dynamic proteins with different temperature-activity profiles provide an opportunity to explore a molecular mechanism of cold and heat adaptation. Their analysis suggests that the maintenance of the balance between stability and flexibility is crucial for proteins to function at their environmental temperatures, and it is achieved by the modification of intramolecular interactions in the process of temperature adaptation.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Euiyoung Bae; Ryan M. Bannen; George N. Phillips
Engineering proteins for higher thermal stability is an important and difficult challenge. We describe a bioinformatic method incorporating sequence alignments to redesign proteins to be more stable through optimization of local structural entropy. Using this method, improved configurational entropy (ICE), we were able to design more stable variants of a mesophilic adenylate kinase with only the sequence information of one psychrophilic homologue. The redesigned proteins display considerable increases in their thermal stabilities while still retaining catalytic activity. ICE does not require a three-dimensional structure or a large number of homologous sequences, indicating a broad applicability of this method. Our results also highlight the importance of entropy in the stability of protein structures.
Proteins | 2005
Michael B. Berry; Euiyoung Bae; Tim Bilderback; Michael Glaser; George N. Phillips
Introduction. Adenylate kinases (AKs, ATP:AMP phosphotransferase, EC 2.7.4.3) are a family of enzymes which catalyze the following reaction: Mg ATP AMP 7 Mg ADP ADP. Several structural works have revealed that AKs have two highly flexible domains which close over bound substrates. The LID domain covers ATP and the site of phosphoryl transfer and the AMP-binding domain closes on AMP when it is bound. Key residues to the domain closure and substrate binding are conserved five arginines in the active site. In Escherichia coli AK, they are Arg36, Arg88, Arg123, Arg156, and Arg167. A previous mutational study suggested an important role of Arg156 in catalysis but its function is not well defined although two E. coli AK structures were already solved with P,P-di(adenosine 5 )-pentaphosphate (Ap5A) and -imidoadenosine 5 -triphosphate (AMPPNP)/AMP, respectively. Here, we report the crystal structure of E. coli AK with bound ADP and AMP determined at a resolution of 2.8 Å and propose possible roles of Arg156 in substrate binding and catalysis.
PLOS ONE | 2012
Yoon Koo; Du-kyo Jung; Euiyoung Bae
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute a microbial immune system against invading genetic elements, such as plasmids and phages. Csn2 is an Nmeni subtype-specific Cas protein, and was suggested to function in the adaptation process, during which parts of foreign nucleic acids are integrated into the host microbial genome to enable immunity against future invasion. Here, we report a 2.2 Å crystal structure of Streptococcus pyogenes Csn2. The structure revealed previously unseen calcium-dependent conformational changes in its tertiary and quaternary structure. This supports the proposed double-stranded DNA-binding function of S. pyogenes Csn2.
Journal of Molecular Biology | 2013
Yoon Koo; Donghyun Ka; Eun-Jin Kim; Nayoung Suh; Euiyoung Bae
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form an RNA-mediated microbial immune system against invading foreign genetic elements. Cas5 proteins constitute one of the most prevalent Cas protein families in CRISPR-Cas systems and are predicted to have RNA recognition motif (RRM) domains. Cas5d is a subtype I-C-specific Cas5 protein that can be divided into two distinct subgroups, one of which has extra C-terminal residues while the other contains a longer insertion in the middle of its N-terminal RRM domain. Here, we report crystal structures of Cas5d from Streptococcus pyogenes and Xanthomonas oryzae, which respectively represent the two Cas5d subgroups. Despite a common domain architecture consisting of an N-terminal RRM domain and a C-terminal β-sheet domain, the structural differences between the two Cas5d proteins are highlighted by the presence of a unique extended helical region protruding from the N-terminal RRM domain of X. oryzae Cas5d. We also demonstrate that Cas5d proteins possess not only specific endoribonuclease activity for CRISPR RNAs but also nonspecific double-stranded DNA binding affinity. These findings suggest that Cas5d may play multiple roles in CRISPR-mediated immunity. Furthermore, the specific RNA processing was also observed between S. pyogenes Cas5d protein and X. oryzae CRISPR RNA and vice versa. This cross-species activity of Cas5d provides a special opportunity for elucidating conserved features of the CRISPR RNA processing event.
Biochemical and Biophysical Research Communications | 2014
Donghyun Ka; Dayoun Kim; Gyeongyun Baek; Euiyoung Bae
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins constitute an RNA-guided microbial defense system against invading foreign genetic materials. Cas2 is one of the core Cas proteins found universally in all the subtypes of CRISPR-Cas systems and is required for incorporating new spacers into CRISPR loci. Cas2 homologues from different CRISPR-Cas subtypes were characterized previously as metal-dependent nucleases with different substrate preferences, and it was proposed that a pH-dependent conformational change mediates metal binding and catalysis. Here, we report the crystal structures of Streptococcus pyogenes Cas2 at three different pHs (5.6, 6.5, and 7.5), as well as the results of its nuclease activity assay against double-stranded DNAs at varying pHs (6.0-9.0). Although S. pyogenes Cas2 exhibited strongly pH-dependent catalytic activity, there was no significant conformational difference among the three crystal structures. However, structural comparisons with other Cas2 homologues revealed structural variability and the flexible nature of its putative hinge regions, supporting the hypothesis that conformational switching is important for catalysis. Taken together, our results confirm that Cas2 proteins have pH-dependent nuclease activity against double-stranded DNAs, and provide indirect structural evidence for their conformational changes.
Proteins | 2007
Euiyoung Bae; Craig A. Bingman; Eduard Bitto; David J. Aceti; George N. Phillips
Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).
Journal of Structural and Functional Genomics | 2007
George N. Phillips; Brian G. Fox; John L. Markley; Brian F. Volkman; Euiyoung Bae; Eduard Bitto; Craig A. Bingman; Ronnie O. Frederick; Jason G. McCoy; Betsy L. Lytle; Brad S. Pierce; Jikui Song; Simon N. Twigger
The Center for Eukaryotic Structural Genomics (CESG) produces and solves the structures of proteins from eukaryotes. We have developed and operate a pipeline to both solve structures and to test new methodologies. Both NMR and X-ray crystallography methods are used for structure solution. CESG chooses targets based on sequence dissimilarity to known structures, medical relevance, and nominations from members of the scientific community. Many times proteins qualify in more than one of these categories. Here we review some of the structures that have connections to human health and disease.
Structure | 2016
Donghyun Ka; Hasup Lee; Yi-Deun Jung; Kyunggon Kim; Chaok Seok; Nayoung Suh; Euiyoung Bae
CRISPRs and Cas proteins constitute an RNA-guided microbial immune system against invading nucleic acids. Cas1 is a universal Cas protein found in all three types of CRISPR-Cas systems, and its role is implicated in new spacer acquisition during CRISPR-mediated adaptive immunity. Here, we report the crystal structure of Streptococcus pyogenes Cas1 (SpCas1) in a type II CRISPR-Cas system and characterize its interaction with S. pyogenes Csn2 (SpCsn2). The SpCas1 structure reveals a unique conformational state distinct from type I Cas1 structures, resulting in a more extensive dimerization interface, a more globular overall structure, and a disruption of potential metal-binding sites for catalysis. We demonstrate that SpCas1 directly interacts with SpCsn2, and identify the binding interface and key residues for Cas complex formation. These results provide structural information for a type II Cas1 protein, and lay a foundation for studying multiprotein Cas complexes functioning in type II CRISPR-Cas systems.
Proteins | 2014
Sojin Moon; Du-kyo Jung; George N. Phillips; Euiyoung Bae
Thermally stable proteins are desirable for research and industrial purposes, but redesigning proteins for higher thermal stability can be challenging. A number of different techniques have been used to improve the thermal stability of proteins, but the extents of stability enhancement were sometimes unpredictable and not significant. Here, we systematically tested the effects of multiple stabilization techniques including a bioinformatic method and structure‐guided mutagenesis on a single protein, thereby providing an integrated approach to protein thermal stabilization. Using a mesophilic adenylate kinase (AK) as a model, we identified stabilizing mutations based on various stabilization techniques, and generated a series of AK variants by introducing mutations both individually and collectively. The redesigned proteins displayed a range of increased thermal stabilities, the most stable of which was comparable to a naturally evolved thermophilic homologue with more than a 25° increase in its thermal denaturation midpoint. We also solved crystal structures of three representative variants including the most stable variant, to confirm the structural basis for their increased stabilities. These results provide a unique opportunity for systematically analyzing the effectiveness and additivity of various stabilization mechanisms, and they represent a useful approach for improving protein stability by integrating the reduction of local structural entropy and the optimization of global noncovalent interactions such as hydrophobic contact and ion pairs. Proteins 2014; 82:1947–1959.