Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eumenio Ancochea is active.

Publication


Featured researches published by Eumenio Ancochea.


Journal of Volcanology and Geothermal Research | 1990

Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data

Eumenio Ancochea; JoséMaría Fuster; Elisa Ibarrola; Antonio Cendrero; Juan Coello; F. Hernán; Jean Marie Cantagrel; Colette Jamond

New age determinations from Tenerife, together with those previously published (93 in all), provide a fairly comprehensive picture of the volcanic evolution of the island. The oldest volcanic series, with ages starting in the late Miocene, are formed mainly by basalts with some trachytes and phonolites which appear in Anaga, Teno and Roque del Conde massifs. In Anaga (NE), three volcanic cycles occurred: one older than 6.5 Ma, a second one between 6.5 and 4.5 Ma, with a possible gap between 5.4 and 4.8 Ma, and a late cycle around 3.6 Ma. In Teno (NW), after some undated units, the activity took place between 6.7 and 4.5 Ma, with two main series separated by a possible pause between 6.2 and 5.6 Ma. In the zone of Roque del Conde (S), the ages are scattered between 11.6 and 3.5 Ma. Between 3.3 and 1.9 Ma, the whole island underwent a period of volcanic quiescence and erosion. The large Canadas volcano, made up of basalts, trachytes and phonolites, was built essentially between 1.9 and 0.2 Ma. To the NE of this central volcano, linking it with Anaga, is a chain of basaltic emission centers, with a peak of activity around 0.8 Ma. The Canadas Caldera had several collapse phases, associated with large ignimbrite emissions. There were, at least, an older phase more than 1 Ma old, on the western part of the volcano, and a younger one, less than 0.6 Ma old, in the eastern side. The two large “valleys” of Guimar and la Orotava were formed by large landslides less than 0.8 Ma ago, and probably before 0.6 Ma ago. The present Canadas caldera was formed by another landslide, less than 0.2 Ma ago. This caldera was later filled by the huge Teide volcano, which has been active even in historic times. During the same period a series of small volcanoes erupted at scattered locations throughout the island. The average eruptive rate in Tenerife was 0.3 km3/ka, with relatively small variations for the different eruptive periods. This island and La Gomera represent a model of growth by discontinuous pulses of volcanic activity, separated by gaps often coinciding with episodes of destruction of the edifices and sometimes extended for several million years. The neighbouring Gran Canaria, on the other hand, had an initial, rapid “shield-building phase” during which more than 90% of the island was built, and a series of smaller pulses at a much later period. A comparison between these three central islands indicates that the previously postulated westward displacement in time of a gap in the volcanic activity is valid only as a first approximation. Several gaps are present on each island, overlapping in time and not clearly supporting either of the models proposed to explain the evolution of the Canaries.


Journal of Volcanology and Geothermal Research | 1992

Evolution of the eastern volcanic ridge of the Canary Islands based on new KAr data

Juan Coello; J. M. Cantagrel; F. Hernán; JoséMaría Fuster; Elisa Ibarrola; Eumenio Ancochea; César Casquet; Colette Jamond; Jóse-Ramón Díaz de Téran; Antonio Cendrero

The results of 64 new KAr age determinations, together with 32 previously published ages, show that after a period of erosion of the basal complex, Miocene volcanic activity started around 20 Ma in Fuerteventura and 15 Ma in Lanzarote, forming a tabular succession of basaltic lavas and pyroclastics with a few salic dykes and plugs. This series includes five separate volcanic edifices, each one with its own eruptive history. In Fuerteventura, several Miocene eruptive cycles have been identified: in the central edifice one around 20–17 Ma, followed by two others centred around 15 and 13 Ma; in the southern edifice the maximum of activity took place around 16–14 Ma, whereas in the northern one the main activity occurred between 14 and 12 Ma. In Lanzarote a first cycle of activity took place in the southern edifice between 15.5 and 14.1 Ma, followed by another between 13.6 and 12.3 Ma. In the northern edifice three pulses occurred: 10.2–8.3, 6.6–5.3 and 3.9–3.8 Ma. An important temporal gap, greater in Fuerteventura than in Lanzarote, separates Series I from the Plio-Quaternary Series II, III and IV, formed by multi-vent basaltic emissions. In Fuerteventura the following eruptive cycles have been identified: 5, 2.9–2.4, 1.8–1.7, 0.8–0.4 and <0.1 Ma. In Lanzarote, the activity was fairly continuous from 2.7 Ma to historic times, with a maximum in the Lower Pleistocene. Eruptive rates in the Series I edifices were on the average 0.1–0.01 km3/ka, comparable but slightly smaller than in similar edifices in Tenerife and La Gomera, but much lower than in Gran Canaria. Average post-Miocene eruptive rates were about 0.013–0.027 km3/ka in Lanzarote and 0.003–0.007 km3/ka in Fuerteventura. All these volcanic edifices show a similar general sequence (fissural eruptions, erosion, multi-vent volcanism), repeated at different periods in different parts of the eastern islands of the Canaries. The model of growth of the Series I edifices is comparable to those in Tenerife and La Gomera: long periods of activity, sometimes greater than 6 m.y., with pulses separated by gaps. However, salic and intermediate differentiates, frequent in Tenerife and La Gomera, are very scarce in these islands. The Fuerteventura-Lanzarote ridge shows a decrease in volcanic activity with time, and also a certain SSW-NNE polarity in the temporal development of volcanism.


Journal of Volcanology and Geothermal Research | 1994

Constructive and destructive episodes in the building of a young Oceanic Island, La Palma, Canary Islands, and genesis of the Caldera de Taburiente

Eumenio Ancochea; F. Hernán; Antonio Cendrero; Jean Marie Cantagrel; JoséMaría Fuster; Elisa Ibarrola; Juan Coello

The results of new field observations, 23 new KAr determinations and sixteen previously published determinations provide the basis for the reconstruction of the subaerial volcanic history of the island of La Palma, after the seamount activity represented by the materials of the Basal Complex. An eruptive phase between 2.0 and 1.3 Ma formed a large shield. A period of volcanic quiescence followed, until around 1 Ma, during which a large lateral collapse partly destroyed the former edifice. Between 1.05 and 0.7 Ma, activity was renewed in the shield and a N-S ridge was built in the southern part of the island. Around 0.7 Ma, two new large lateral collapses affected the western part of both edifices, and they were followed by eruptions between 0.71 and 0.65 Ma which built a new edifice that partly filled the depressions thus created. The Caldera de Taburiente constitutes the eroded remnants of the depression formed in the northern shield. From 0.65 Ma to present, activity has been restricted to the N-S ridge, which has continued to grow southwards. There was a general N-S migration of volcanic activity with time, but in the shield the trend was northwest to southeast. Eruptive rates seem to have been fairly constant during the different eruptive phases considered, between 0.15 and 0.37 km3/ka. A very similar succession of constructive and destructive episodes has been obtained for the neighboring island of Hierro, but in this case the activity started around 0.8 Ma and eruptive rates were about 0.5 km3/ka.


Journal of Volcanology and Geothermal Research | 1999

Evolution of the Cañadas edifice and its implications for the origin of the Cañadas Caldera (Tenerife, Canary Islands)

Eumenio Ancochea; María José Huertas; J. M. Cantagrel; Juan Coello; JoséMaría Fuster; Nicolas Arnaud; E. Ibarrola

The volcano-stratigraphic and geochronologic data presented in this work show that the Tenerife central zone has been occupied during the last 3 Ma by shield or central composite volcanoes which reached more than 3000 m in height. The last volcanic system, the presently active Teide-Pico Viejo Complex began to form approximately 150 ka ago. The first Canadas Edifice CE. volcanic activity took place between about 3.5 Ma and 2.7 Ma. The CE-I is formed mainly by basalts, trachybasalts and trachytes. The remains of this phase outcrop in the Canadas Wall CW. sectors of La Angostura 3.5–3.0 Ma and 3.0–2.7 Ma., Boca de Tauce 3.0 Ma., and in the bottom of some external radial ravines 3.5 Ma.. The position of its main emission center was located in the central part of the CC. The volcano could have reached 3000 m in height. This edifice underwent a partial destruction by failure and flank collapse, forming debris-avalanches during the 2.6–2.3 Ma period. The debris-avalanche deposits can be seen in the most distal zones in the N flank of the CE-I Tigaiga Breccia.. A new volcanic phase, whose deposits overlie the remains of CE-I and the former debris-avalanche deposits, constituted a new volcanic edifice, the CE-II. The dyke directions analysis and the morphological reconstruction suggest that the CE-II center was situated somewhat westward of the CE-I, reaching some 3200 m in height. The CE-II formations are well exposed on the CW, especially at the El Cedro 2.3–2.00 Ma. sector. They are also frequent in the S flank of the edifice 2.25–1.89 Ma. in Tejina 2.5–1.87 Ma. as well as in the Tigaiga massif to the N 2.23 Ma.. During the last periods of activity of CE-II, important explosive eruptions took place forming ignimbrites, pyroclastic flows, and fall deposits of trachytic composition. Their ages vary between 1.5 and 1.6 Ma Adeje ignimbrites, to the W.. In the CW, the Upper Ucanca phonolitic Unit 1.4 Ma. could be the last main episode of the CE-II. Afterwards, the Can˜adas III phase began. It is well represented in the CW sectors of Tigaiga 1.1 Ma–0.27 Ma., Las Pilas 1.03 Ma–0.78 Ma., Diego Hernandez 0.54 Ma–0.17 Ma. and Guajara 1.1 Ma–0.7 Ma.. The materials of this edifice are also found in the SE flank. These materials are trachybasaltic lava-flows and abundant phonolitic lava and pyroclastic flows 0.6 Ma–0.5 Ma. associated with abundant plinian falls. The CE-III was essentially built between 0.9 and 0.2 Ma, a period when the volcanic activity was also intense in the ‘Dorsal Edifice’ situated in the easterly wing of Tenerife. The so called ‘valleys’ of La Orotava and Gu¨imar, transversals to the ridge axis, also formed during this period. In the central part of Tenerife, the CE-III completed its evolution with an explosive deposit resting on the top of the CE, for which ages from 0.173 to 0.13 Ma have been obtained. The CC age must be younger due to the fact that the present caldera scarp cuts these deposits. On the controversial origin of the CC central vertical collapse vs. repeated flank failure and lateral collapse of mature volcanic edifices., the data discussed in this paper favor the second hypothesis. Clearly several debris-avalanche type events exist in the history of the volcano but most of the deposits are now under the sea. The caldera wall should represent the proximal scarps of the large slides whose intermediate scarps are covered by the more recent Teide-Pico Viejo volcanoes.


<p>Gibbons, Wes; Moreno, Teresa (eds.). Geology Of Spain. London : The Geological Society of London, 2002. ISBN 1-86239-110-6</p> | 2002

Cenozoic volcanism II: the Canary Islands

Juan Carlos Carracedo; Francisco-Jose Perez-Torrado; Eumenio Ancochea; Joaquín Meco; F. Hernán Reguera; Carmen Rosa Cubas; Ramón Casillas; Eduardo Rodriguez-Badiola; Agustina Ahijado

The Canarian archipelago comprises seven main volcanic islands and several islets that form a chain extending for c. 500 km across the eastern Atlantic, with its eastern edge only 100 km from the NW African coast. The islands have had a very long volcanic history, with formations over 20 million years old cropping out in the eastern Canaries. Thus all stages of the volcanic evolution of oceanic islands, including the submarine stage as well as the deep structure of the volcanoes, can be readily observed. Rainfall and vegetation cover are relatively low, with the exception of the island of La Palma, favouring both geological observation and rock preservation. Furthermore, the absence of surface water has promoted groundwater mining by means of up to 3000 km of subhorizontal tunnels (locally known as ‘galerias’). These galerias are especially numerous in Tenerife, La Palma and El Hierro, and allow the direct observation and sampling of the deep structure of the island volcanoes without requiring expensive and indirect geophysical methods.


Geology | 1999

Repeated debris avalanches on Tenerife and genesis of Las Cañadas caldera wall (Canary Islands)

Jean Marie Cantagrel; Nicolas Arnaud; Eumenio Ancochea; José M. Fúster; María José Huertas

Geologic evidence on Tenerife, Canary Islands, indicates six successive north-directed debris avalanche events, including: the Anaga and Teno (ca. 6 Ma) events that affected the old basaltic series, and the Tigaiga (>2.3 Ma), Roques de Garcia (possibly 0.6–0.7 Ma), Orotava (ca. 0.6 Ma), and Icod (<0.15 Ma) avalanche events that affected the Canadas and Dorsal volcanic edifices. The approximate total volume (>1000 km3) inferred for these events can account for the volume of previous estimates of offshore volcanic debris. These repeated flank failures can also account for the present morphology of Las Canadas caldera wall, which partly bounds a multiepisodic lateral-collapse structure 25 km wide.


Journal of Volcanology and Geothermal Research | 1996

Volcanic complexes in the eastern ridge of the Canary Islands: the Miocene activity of the island of Fuerteventura

Eumenio Ancochea; J.L. Brandle; C.R. Cubas; F. Hernán; María José Huertas

Abstract Fuerteventura has been since early stages of its growth the result of three different adjacent large volcanic complexes: Southern, Central and Northern. The definition of these volcanic complexes and their respective growing episodes is based on volcano-stratigraphic, morphological and structural criteria, particularly radial dyke swarms. Each complex has its own prolonged history that might be longer than 10 m.y. During that time, several periods of activity alternating with gaps accompanied by important erosion took place. The evolution of each volcanic complex has been partially independent but all the three are affected by at least three Miocene tectonic phases that controlled considerably their activity. The volcanic complexes are deeply eroded and partially submerged. In the core of the Northern and the Central volcanic complexes there is a set of submarine and plutonic rocks intensely traversed by a dyke swarm, known as the Basal Complex. The Basal Complex has been interpreted in different ways but all previous authors have considered it to be prior to the subaerial shield stage of the island. Here we advance the idea that the Basal Complex represent the submarine growing stage of the volcanic complexes and the hypabyssal roots (plutons and dykes) of their successive subaerial growing episodes. Two seamounts situated nearby, southwest of the island, might be interpreted as remains of two other major volcanoes. These two volcanoes, together with those forming the present emerged island of Fuerteventura, and finally those of Famara and Los Ajaches situated further north on Lanzarote constitute a chain of volcanoes located along a lineation which is subparallel to the northwestern African coastline and which may relate to early Atlantic spreading trends in the area.


Journal of Volcanology and Geothermal Research | 2002

40Ar/39Ar stratigraphy of pyroclastic units from the Cañadas Volcanic Edifice (Tenerife, Canary Islands) and their bearing on the structural evolution

María José Huertas; N.O Arnaud; Eumenio Ancochea; J.M Cantagrel; JoséMaría Fuster

Many felsic pyroclastic units of various types are exposed in different sectors of Tenerife. New 40Ar/39Ar determinations allow them to be placed more precisely in the general volcano-stratigraphic succession. According to geographic distribution, stratigraphic position and isotopic ages, four main pyroclastic phases may be identified. The first, San Juan de la Rambla phase (2.1 Ma), is only known in the north of Tenerife in the Tigaiga massif. The second, Adeje phase (1.8–1.5 Ma), is most completely developed in the southwest of the island, but occasionally occurs in the other sectors. The third, Las Americas phase (1 Ma), is only presently known in the southern region. The fourth, Bandas del Sur phase (0.7–0.15 Ma), is essentially exposed in the southeast sector. The results of this work emphasise the complexity of the pre-1-Ma eruptive history of Tenerife and underline the fact that explosive volcanic activity has taken place for at least the last 2 Ma. Vertical collapse structures have developed as a result of pyroclastic flow activity and these may be as old as 1.6–1.8 Ma, therefore much older than generally considered. The precise location of calderas is difficult to ascertain as a result of the repeated lateral flank collapse during the construction of the Canadas volcano.


Journal of Volcanology and Geothermal Research | 2003

The felsic dikes of La Gomera (Canary Islands): identification of cone sheet and radial dike swarms

Eumenio Ancochea; J.L. Brandle; María José Huertas; C.R. Cubas; F. Hernán

On the northern part of La Gomera there exists a great abundance of trachytic–phonolitic dikes showing a broad diversity in dip and strike. Several methods have been applied in order to separate these dikes in different sets, localise the area from where they derive, and reconstruct the geometry of the swarms. The oldest dikes correspond to a radial swarm dated at 8 Ma. The felsic activity migrated then southwestwards and a second radial swarm and a cone sheet complex were developed between 7.5 and 6.4 Ma ago. The cone sheet complex is 10 km in diameter and shared its centre with that of the second radial structure. The cone sheets exhibit an outward decrease of dip angle whilst every individual sheet maintains a constant inclination. This geometry reflects the existence of an ancient single dome-shaped shallow magma chamber situated some 1650 m below present sea level. The eastern radial swarm represents a felsic episode that could mark the ending of the Lower Old Basalts, the earlier subaerial activity of La Gomera. The two other dike swarms represent a younger episode coeval with the Upper Old Basalts.


Geology | 2013

The architecture of the European-Mediterranean lithosphere: A synthesis of the Re-Os evidence

José M. González-Jiménez; Carlos Villaseca; William L. Griffin; Elena Belousova; Zoltán Konc; Eumenio Ancochea; Suzanne Y. O'Reilly; Norman J. Pearson; Carlos J. Garrido; Fernando Gervilla

Rhenium-depletion model ages ( T RD ) of sulfides in peridotite xenoliths from the subcontinental mantle beneath central Spain (the Calatrava volcanic field) reveal that episodes of mantle magmatism and/or metasomatism in the Iberia microplate were linked to crustal growth events, mainly during supercontinent assembly and/or breakup at ca. 1.8, 1.1, 0.9, 0.6, and 0.3 Ga. A synthesis of available in situ and whole-rock Os-isotope data on mantle-derived peridotites shows that this type of mantle (maximum T RD of ca. 1.8 Ga) is widespread in the subcontinental mantle of Europe and Africa outboard from the Betics-Maghrebides-Appenines front. In contrast, the mantle enclosed within the Alpine domain records T RD as old as 2.6 Ga, revealing a previously unrecognized Archean domain or domains in the central and western Mediterranean. Our observations indicate that ancient fragments of subcontinental lithospheric mantle have played an important role in the development of the present architecture of the Mediterranean lithosphere.

Collaboration


Dive into the Eumenio Ancochea's collaboration.

Top Co-Authors

Avatar

María José Huertas

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

F. Hernán

University of La Laguna

View shared research outputs
Top Co-Authors

Avatar

J.L. Brandle

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

JoséMaría Fuster

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Carlos Villaseca

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Juan Coello

University of La Laguna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisa Ibarrola

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Marie Cantagrel

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge