Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eun Ha Lee is active.

Publication


Featured researches published by Eun Ha Lee.


Brain Research | 2003

Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten.

Hyang Dok-Go; Kwang Heun Lee; Hyoung Ja Kim; Eun Ha Lee; Jiyong Lee; Yun Seon Song; Yong Ha Lee; Changbae Jin; Yong Sup Lee; Jungsook Cho

The flavonoids quercetin, (+)-dihydroquercetin, and quercetin 3-methyl ether were isolated from the ethyl acetate fractions of the fruits and stems of Opuntia ficus-indica var. saboten. In the present study, we evaluated their protective effects against oxidative neuronal injuries induced in primary cultured rat cortical cells and their antioxidant activities by using three different cell-free bioassays. Quercetin was found to inhibit H(2)O(2)- or xanthine (X)/xanthine oxidase (XO)-induced oxidative neuronal cell injury, with an estimated IC(50) of 4-5 micro g/ml. However, it was no more protective at concentrations of 30 micro g/ml and above. (+)-Dihydroquercetin concentration-dependently inhibited oxidative neuronal injuries, but it was less potent than quercetin. On the other hand, quercetin 3-methyl ether potently and dramatically inhibited H(2)O(2)- and X/XO-induced neuronal injuries, with IC(50) values of 0.6 and 0.7 micro g/ml, respectively. All three principles markedly inhibited lipid peroxidation and scavenged 1,1-diphenyl-2-picrylhydrazyl free radicals. In addition, quercetin and quercetin 3-methyl ether were shown to inhibit XO activity in vitro, with respective IC(50) values of 10.67 and 42.01 micro g/ml. These results indicate that quercetin, (+)-dihydroquercetin, and quercetin 3-methyl ether are the active antioxidant principles in the fruits and stems of Opuntia ficus-indica var. saboten exhibiting neuroprotective actions against the oxidative injuries induced in cortical cell cultures. Furthermore, quercetin 3-methyl ether appears to be the most potent neuroprotectant of the three flavonoids isolated from this plant.


Archives of Pharmacal Research | 2003

Constituents of the stems and fruits of Opuntia ficus-indica var. saboten

Eun Ha Lee; Hyoung Ja Kim; Yun Seon Song; Changbae Jin; Kyung-Tae Lee; Jungsook Cho; Yong Sup Lee

From the stems and fruits ofOpuntia ficus-indica var.saboten, eight flavonoids, kaempferol (1), quercetin (2), kaempferol 3-methyl ether (3), quercetin 3-methyl ether (4), narcissin (5), (+)-dihydrokaempferol (aromadendrin,6), (+)-dihydroquercetin (taxifolin,7), eriodictyol (8), and two terpenoids, (6S,9S)-3-oxo-α-ionol-|β-D-glucopyranoside (9) and corchoionoside C (10) were isolated and identified by means of chemical and spectroscopic. Among these isolates, compounds3–5 and8–10 were reported for the first time from the stems and fruits of O.ficusindica var.saboten.


Neurochemistry International | 2010

Isoquercitrin is the most effective antioxidant in the plant Thuja orientalis and able to counteract oxidative-induced damage to a transformed cell line (RGC-5 cells)

Sang Hoon Jung; Beum Jin Kim; Eun Ha Lee; Neville N. Osborne

The shrub Thuja orientalis is extensively used as a herbal medicine in Korea and China. In the present study extracts of the plant were subjected to fractionation and purification, with seven compounds (myricitrin, isoquercitrin, hypoletin-7-O-β-D-xylopyranoside, quercitrin, kaempferin, kaempferol, and amentoflavone) being isolated. Of these seven compounds, isoquercitrin was found to be the most effective at attenuating the death of RGC-5 cells in culture caused by exposure to hydrogen peroxide (H(2)O(2)). It was found that an insult of H(2)O(2) to RGC-5 cells caused them to die by apoptosis, demonstrated not only by staining dead cells for phosphatidylserine but also by the up-regulation (cleaved PARP, AIF, p53) and down-regulation (Bcl-2) of proteins associated with apoptosis and survival. Subsequent studies showed that isoquercitrin acts as a powerful antioxidant. It scavenges ROS generally as demonstrated by staining of cultures as well as the generation of individual radical species (H(2)O(2), OH* and O(2)(*-)). Moreover, isoquercitrin reduced the depletion of glutathione (GSH) caused by elevation of specific radical species (H(2)O(2), OH* and O(2)(*-)) in RGC-5 cells in culture and blunted the decrease in catalase and glutathione peroxidase 1 (Gpx-1) caused by exposure of RGC-5 cells to H(2)O(2). Furthermore, isoquercitrin potently attenuated the lipid peroxidation of rat brain homogenates initiated by nitric oxide, with an IC(50) value of 1.04 μM. Since isoquercitrin can be tolerated when taken orally it is suggested that this substance might reach the retina and therefore be potentially useful for treating glaucoma, in which oxidative stress is thought to play a major role in the demise of retinal ganglion cells.


Nature Communications | 2015

Single-photon non-linear optics with a quantum dot in a waveguide

Alisa Javadi; Immo Söllner; M. Arcari; S. Lindskov Hansen; Leonardo Midolo; Sahand Mahmoodian; Gabija Kiršanskė; Tommaso Pregnolato; Eun Ha Lee; Jin Dong Song; Søren Stobbe; Peter Lodahl

Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon–photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.


Phytotherapy Research | 2013

Chrysanthemum indicum L. extract induces apoptosis through suppression of constitutive STAT3 activation in human prostate cancer DU145 cells.

Chulwon Kim; Moo-Chang Kim; Sung-Moo Kim; Dongwoo Nam; Seung-Hoon Choi; Sung-Hoon Kim; Kyoo Seok Ahn; Eun Ha Lee; Sang Hoon Jung; Kwang Seok Ahn

Chrysanthemum indicum L. has been shown to possess antiinflammatory and anticancer activities, but its molecular targets/pathways are not yet fully understood in tumor cells. In the present study, the potential effects of C. indicum on signal transducer and activator of transcription 3 (STAT3) signaling pathway in different tumor cells were examined. The solvent fractions (hexane, CH2Cl2, EtOAc, and BuOH,) were obtained from a crude extract (80% EOH extract) of C. indicum. The methylene chloride fraction of C. indicum (MCI) exhibited strong cytotoxic activity as compared with the other fractions and clearly suppressed constitutive STAT3 activation against both DU145 and U266 cells, but not MDA‐MB‐231 cells. The suppression of constitutive STAT3 activation by MCI is associated with blocking upstream JAK1 and JAK2, but not Src. MCI downregulated the expression of STAT3‐regulated gene products; this is correlated with the accumulation of the cell cycle at sub‐G1 phase, the induction of caspase‐3 activation, and apoptosis. Moreover, the major components of the MCI were bioactive compounds such as sudachitin, hesperetin, chrysoeriol, and acacetin. Sudachitin, chrysoeriol, and acacetin also exerted significantly cytotoxicity, clearly suppressed constitutive STAT3 activation, and induced apoptosis, although hesperetin did not show any significant effect in DU145 cells. Overall, our results demonstrate that MCI could induce apoptosis through inhibition of the JAK1/2 and STAT3 signaling pathways. Copyright


Journal of Ethnopharmacology | 2011

Methylene chloride fraction of the leaves of Thuja orientalis inhibits in vitro inflammatory biomarkers by blocking NF-κB and p38 MAPK signaling and protects mice from lethal endotoxemia

Jin-Young Kim; Hyun Jung Kim; Sung-Moo Kim; Kyung-Ran Park; Hyeung-Jin Jang; Eun Ha Lee; Sang Hoon Jung; Kwang Seok Ahn

AIM OF THE STUDY Thuja orientalis (TO) has been a recognized herbal medicine across Northeast Asian countries for thousands of years and used for the treatment of various inflammatory diseases through as yet undefined mechanisms. In this study, we set out to determine whether the anti-inflammatory effects of this plant are mediated to suppress mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS AND METHODS RAW 264.7 cells were pretreated with the methylene chloride fraction of TO (MTO) and stimulated with LPS. Nitric oxide (NO) release was determined by the accumulation of nitrite in the culture supernatants and tumor necrosis factor-α (TNF-α) and IL-6 secretion were determined by immunoenzymatic assay. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were evaluated via RT-PCR and Western blotting. NF-κB activation was also evaluated by reporter gene assay and electrophoretic mobility shift assay (EMSA). In addition, the protective effect of MTO was evaluated by use of the LPS-induced endotoxin shock model in mice. RESULTS We found that MTO significantly suppressed LPS-stimulated NO and IL-6 production without affecting cell viability. MTO inhibited the expression of LPS-induced iNOS and COX-2 protein and their mRNA expression. Also, TNF-α and IL-6 secretion were decreased by MTO in both PMA and ionomycin-stimulated splenocytes. As a result, MTO inhibited pro-inflammatory cytokines such as TNF-α and IL-6, which is hypothesized as being due to the suppression of LPS-induced p38 MAPK and NF-κB activation. Moreover, MTO improved the survival rate during lethal endotoxemia by inhibiting the production of TNF-α in an animal model and our LC-MS analysis showed that a major component of MTO was pinusolide. CONCLUSIONS We demonstrate here the evidence that the methylene chloride fraction of Thuja orientalis (MTO) potentially inhibits the biomarkers related to inflammation in vitro and in vivo, and might be provided as a potential candidate for the treatment of inflammatory diseases.


Food and Chemical Toxicology | 2011

Edible wild vegetable, Gymnaster koraiensis protects retinal ganglion cells against oxidative stress

Kyung-A Kim; Kui Dong Kang; Eun Ha Lee; Chu Won Nho; Sang Hoon Jung

This study was conducted to determine whether Gymnaster koraiensis is effective at blunting the negative influence of N-methyl-D-aspartate (NMDA) on the retinas of rats and on oxidative stress induced cell death in transformed retinal ganglion cells (RGC-5). The ethyl acetate fraction of G. koraiensis (EAGK) and the isolated compound, 3,5-di-O-caffeoylquinic acid (3,5-DCQA), were shown to significantly attenuate the negative effect of H(2)O(2) on the RGC-5 cells tested by various procedures. The inclusion of EAGK or 3,5-DCQA in the culture reduced the reactive oxygen species (ROS) and replenished the reduced glutathione levels caused by various radical species such as H(2)O(2,) O(2)()(-) or ()OH. Moreover, EAGK or 3,5-DCQA inhibited lipid peroxidation caused by sodium nitroprusside (SNP) in rat brain homogenates. From in vivo experiments, the presence of NMDA in the retina affected the thickness of the inner plexiform layer (IPL) and the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) in positive ganglion cells. EAGK or 3,5-DCQA protected the thinning of the IPL and increased TUNEL positive cells in the ganglion cell layer (GCL). Our results clearly demonstrate the neuroprotective effect of EAGK both in vitro and in vivo. Moreover, 3,5-DCQA is suggested to be the active compound of EAGK.


Phytomedicine | 2011

A methylene chloride fraction of Saururus chinensis induces apoptosis through the activation of caspase-3 in prostate and breast cancer cells

Han-Young Kim; Tae Won Choi; Hyun Jung Kim; Sung-Moo Kim; Kyung-Ran Park; Hyeung-Jin Jang; Eun Ha Lee; Chul Young Kim; Sang Hoon Jung; Bum Sang Shim; Kwang Seok Ahn

The aerial parts of Saururus chinensis (SC) have been used for the treatment of edema, fever, jaundice, and inflammatory diseases in Korean folk medicine for centuries. However, the mechanism by which SC exerts these anti-tumorigenic activities in human prostate and breast cancer cells has not yet been fully understood. In this study, we report on the methylene chloride fraction from SC exerting cytotoxicity against prostate and breast cancer cells in a dose-dependent manner. Specifically, SC exerted the most potent cytotoxicity in LNCaP and MCF-7 cells. SC was shown to down-regulate various angiogenetic (VEGF), proliferative (Cyclin D₁, anti-apoptotic (Bcl-2) gene products in these cells. SC also increased the number of annexin V-positive apoptotic bodies and the sub-G1 DNA contents of the cell cycle undergoing apoptosis through caspase-3 activation in both LNCaP and MCF-7 cells. We further confirmed that caspase-3 plays an important role in SC-induced apoptosis in LNCaP and MCF-7 cells through the use of the caspase-3 inhibitor. Moreover, we observed that SC potentiated paclitaxel-induced apoptosis in MCF-7 cells and sauchinone is a major active constituent of SC, which could induce apoptosis in the cells. Taken together, our data provide the evidence that SC induces apoptosis depending on caspase-3 activation and overcomes the natural biological resistance to chemotherapy found in human prostate and breast cancer cells.


Journal of Agricultural and Food Chemistry | 2014

Chlorogenic acid and coffee prevent hypoxia-induced retinal degeneration.

Holim Jang; Hong Ryul Ahn; Hyoung Jo; Kyung-A Kim; Eun Ha Lee; Ki Won Lee; Sang Hoon Jung; Chang Yong Lee

This study explored whether chlorogenic acid (CGA) and coffee have protective effects against retinal degeneration. Under hypoxic conditions, the viability of transformed retinal ganglion (RGC-5) cells was significantly reduced by treatment with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP). However, pretreatment with CGA attenuated cell death in a concentration-dependent manner. In addition, CGA prevented the up-regulation of apoptotic proteins such as Bad and cleaved caspase-3. Similar beneficial effects of both CGA and coffee extracts were observed in mice that had undergone an optic nerve crush (ONC) procedure. CGA and coffee extract reduced cell death by preventing the down-regulation of Thy-1. Our in vitro and in vivo studies demonstrated that coffee and its major component, CGA, significantly reduce apoptosis of retinal cells induced by hypoxia and NO, and that coffee consumption may help in preventing retinal degeneration.


Journal of Agricultural and Food Chemistry | 2014

Bioavailability of Ginsenosides from White and Red Ginsengs in the Simulated Digestion Model

Eun Ok Kim; Kwang Hyun Cha; Eun Ha Lee; Sang Min Kim; Sang Won Choi; Cheol-Ho Pan; Byung-Hun Um

This study aims to investigate the bioavailability of ginsenosides during simulated digestion of white (WG) and red (RG) ginseng powders. Stability, bioaccessibility, and permeability of ginsenosides present in WG and RG were studied in a Caco-2 cell culture model coupled with oral, gastric, and small intestinal simulated digestion. Most ginsenosides in WG and RG were stable (>90%) during the simulated digestion. Bioaccessibilities of total ginsenosides during in vitro digestion of WG and RG were similar at approximately 85%. However, the bioaccessibility of protopanaxatriol type ginsenosides in the early food phase was greater than that of the protopanaxadiol type. The less polar RG ginsenosides were released later following the jejunum phase. Ginsenosides had low permeability (<1 × 10(-6) cm/s) through Caco-2 cell monolayers. These findings suggest that the WG and RG ginsenoside compositions affect bioaccessibility during digestion and that ginsenosides are poorly absorbed in humans.

Collaboration


Dive into the Eun Ha Lee's collaboration.

Top Co-Authors

Avatar

Sang Hoon Jung

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cheol-Ho Pan

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Byung-Hun Um

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hee Ju Lee

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chu Won Nho

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dae-Geun Song

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chul Young Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwang Hyun Cha

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kyungsu Kang

Korea Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge