Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eun Hea Jho is active.

Publication


Featured researches published by Eun Hea Jho.


Chemosphere | 2015

Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

Jinwoo Im; Kyung Yang; Eun Hea Jho; Kyoungphile Nam

The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils.


Journal of Hazardous Materials | 2015

Effect of dissolved humic acid on the Pb bioavailability in soil solution and its consequence on ecological risk.

Jinsung An; Eun Hea Jho; Kyoungphile Nam

Current risk characterization in ecological risk assessment does not consider bioavailability of heavy metals, which highly depends on physicochemical properties of environmental media. This study was set to investigate the effect of humic acid (HA), used as a surrogate of organic matter, on Pb toxicity and the subsequent effect on risk characterization in ecological risk assessment. Pb toxicity was assessed using Microtox(®) in the presence and absence of two different forms of HA, particulate HA (pHA) and dissolved HA (dHA). With increasing contact time, the EC10 values increased (i.e., the toxic effects decreased) and the dissolved Pb concentrations of the filtrates decreased. The high correlation (R = 0.88, p < 0.001) between toxic effects determined using both the mixture and its filtrate as exposure media leads us to conclude that the Pb toxicity highly depends on the soluble fraction. Also, reduced Pb toxicity with increasing dHA concentrations, probably due to formation of Pb-dHA complexes, indicated that Pb toxicity largely comes from free Pb ions. Overall, this study shows the effect of HA on metal toxicity alleviation, and emphasizes the need for incorporating the bioavailable heavy metal concentrations in environmental media as a point of exposure in ecological risk assessment.


Water Research | 2015

Lithium sorption properties of HMnO in seawater and wastewater.

Hyunju Park; Naresh Singhal; Eun Hea Jho

The lithium concentration in seawater is 0.17 mg/L, which is very low, but the overall quantity is approximately 2.5 × 10(14) kg. Therefore, seawater, which contains a vast amount of lithium, could be a major alternative source that might supply the rising demand for lithium. This research was undertaken to evaluate the feasibility of a manganese oxide (HMnO) adsorbent, which was produced after leaching lithium from lithium manganese oxide, for lithium collection from seawater. The HMnO was synthesized and deformed to a plastic after wet blending of manganese oxide and lithium hydroxide, and subsequently, the influence of pH, sorption isotherms, sorption rates, sorption energies, and effects of the co-ions were measured. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° indicated that the nature of the lithium sorption was both spontaneous and endothermic. The used HMnO could be regenerated by washing it with an HCl solution. The results demonstrated that HMnO could be effectively used for the collection of lithium from seawater with good selectivity.


Journal of Soils and Sediments | 2017

Long-term leaching prediction of constituents in coal bottom ash used as a structural fill material

Hosub Lee; Gihyeon Yu; Yongju Choi; Eun Hea Jho; Kyoungphile Nam

PurposeThis study is aimed to assess the long-term leaching of inorganic constituents from structural fills composed of reused coal bottom ash in Korea and identify key parameters that affect the amount of the constituents leached.Materials and methodsA model for the prediction of long-term leaching by percolation of stormwater through a structural fill is adopted and used. The long-term leaching model is applied to five field sites in Korea using site-specific parameters obtained for each site and coal bottom ash specific parameters determined using column studies for two coal bottom ash samples collected from coal-fired power plants.Results and discussionThe long-term leaching of trace inorganic constituents, As, Cu, Sb, and Zn, is variable among the sites primarily due to the variation in the total amount of leachable constituents and application depth of a structural fill. First-order leaching rate constant is also one of the key parameters when the leaching rate is relatively small. Because of the significant variability in the leaching rate constants and application depths, the time for the leachate constituent concentration to reach half the initial value, t50%, ranges from less than a year to more than hundreds of years for the studied sites and constituents.ConclusionsThe long-term leaching characteristics of the trace inorganic constituents are predicted to significantly vary by the type of reused bottom ash and the site conditions, suggesting the need to determine the model parameters in a case-specific manner.


Applied Biological Chemistry | 2017

Effect of hemoglobin on the growth and Cd accumulation of pea plants (Pisum sativum L.)

Jae Ryung Hur; Eun Hea Jho

This study was set to investigate the effect of the presence of hemoglobin (Hb) in cadmium (Cd)-contaminated soil on phytotoxicity and Cd accumulation. The effect of Hb on the Cd accumulation by Pisum sativum L. (pea) and seed germination and growth was studied using pot tests with the artificially Cd-contaminated soil. The results show that the externally applied Hb to Cd-contaminated soil samples did not promote Cd accumulation by P. sativum. However, the Fe accumulation was greater in the presence of Hb. The seed germination was not affected, but the adverse effects on the plant growth increased with increasing Hb/Cd molar ratio from 0 to 0.015. This can be attributed to toxic effects of the Fe added with the Hb application. The results suggest that the presence of Hb may have harmful effects on pea plants used in phytoremediation of Cd-contaminated soil due to toxic effects imposed by Fe.


Science of The Total Environment | 2018

Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria

Sun Kyung Hwang; Eun Hea Jho

The removals of heavy metals and sulfate in the synthetic acid mine drainages (AMDs) by Desulfovibrio desulfuricans, sulfate-reducing bacteria (SRB), and the indigenous bacteria isolated from the mine area soil sample were studied to compare the AMD treatment efficiencies. The AMD treatment by the D. desulfuricans grown in the Desulfovibrio medium was used to represent bioaugmentation, while the AMD treatment by the indigenous bacteria grown in the Desulfovibrio medium was used to represent biostimulation. The consumption of lactate and sulfate suggested that the zinc (Zn) removal in the Zn-spiked Desulfovibrio medium by D. desulfuricans involved chemical precipitation and biosorption. The complete Zn removal by D. desulfuricans took 24 h, while the indigenous bacteria took 360 h. The significantly lower rate can probably be attributed to the composition of the culture. The removal of Zn in the sulfate-rich synthetic AMD-containing Desulfovibrio medium (i.e., AMD) was adversely affected by the presence of other heavy metals. Also, the sulfate reduction by D. desulfuricans and the indigenous bacteria was reduced from 47% to 20% and from 36% to 6%, respectively. The inhibitive effects on the removal of heavy metals and sulfate were greater with the Zn/Cu-spiked AMD than the Zn-spiked AMD. Overall, the indigenous bacteria showed potential for removing heavy metals and sulfate in AMDs, while the removal efficiency was lower than D. desulfuricans. The continuous supply of carbon sources with an adaptation period may be required to enhance the AMD treatment efficiency by the indigenous bacteria.


Journal of Hazardous Materials | 2017

Importance of chemical binding type between As and iron-oxide on bioaccessibility in soil: Test with synthesized two line ferrihydrite

Seulki Jeong; Kyung Yang; Eun Hea Jho; Kyoungphile Nam

Bioaccessible concentrations of As associated with Fe oxide as different chemical binding types were determined in soils using the in vitro Physiologically Based Extraction Test (PBET). When compared to the five-step sequential extraction data, most of the As extracted by in vitro PBET originated from the amorphous Fe oxide-bound fraction, and more importantly, the bioaccessibility of As ranged from 0 to 58.8% in 24 soil samples. Two batches of ferrihydrite were synthesized separately. For one batch, As was adsorbed onto the ferrihydrite after synthesis; for the other one, As was added while synthesizing ferrihydrite to co-precipitate. The bioaccessible concentration of As determined by in vitro PBET of the former was 415mg of As/kg of ferrihydrite and that of the latter was 67mg of As/kg of ferrihydrite. X-ray photoelectron spectra (XPS) analysis indicated that As-O-Fe bonds were evident in As-associated ferrihydrite sample and especially, As was found within the Fe oxide lattice in the co-precipitated sample. Our data suggest that binding type between As and Fe oxide should be considered when determining the bioaccessibility of As in soil, which, in turn, greatly influences the realistic risk of As present in soil.


Science of The Total Environment | 2018

Role of hemoglobin in hemoglobin-based remediation of the crude oil-contaminated soil

Jin-Kyung Hong; Eun Hea Jho; Hyo Sub Choi; Guyoung Kang

This study investigated the changes in the indigenous microbial community structure with hemoglobin (Hb) application to determine the role of Hb in Hb-based remediation of crude oil-contaminated soil. The phylogenetic diversity of the bacterial community showed that the Hb addition selected surfactants-producing species, thereby, promoting TPH degradation. The significant increase in the CO2 generation, which can be related to the increase in the bacterial abundance inferred from the 16S rRNA gene copy number, supports the enhanced TPH degradation with Hb application. The similar residual TPH concentrations in the presence of only hydrogen peroxide (H2O2) and both Hb and H2O2 suggested that the role of Hb as a catalyst was not as significant as the role of Hb as a nutrient. Also, in the presence of H2O2, a greater recovery of the microbial community structure was observed with the double Hb injection than the single Hb injection. Overall, this study shows that the Hb-based remediation strategies via microbial metabolism can be successfully applied to remediate the crude-oil contaminated Kuwaiti soil.


Journal of Hazardous Materials | 2018

Effect of initial pH, operating temperature, and dissolved oxygen concentrations on performance of pyrite-fuel cells in the presence of Acidithiobacillus ferrooxidans

Won Jung Ju; Eun Hea Jho; Kyoungphile Nam

Fuel cell technology can be applied to remove pyrite from pyrite containing mine waste (PCMW) and to generate electricity. This study investigated the effect of pH, presence of Acidithiobacillus ferrooxidans, operating temperature, and dissolved oxygen (DO) concentration on the performance of pyrite-fuel cells (PFCs). These factors affect the pyrite dissolution rate, which affects the electron movement for electricity generation, hence electrical performance. The PFCs performance based on the maximum power density and maximum current density, obtained on the 28th day, was better at pH 2.2 (0.74 mW m-2, 28 mA m-2) than at pH 4.3 and pH 6.5 and in the presence of A. ferrooxidans (i.e., biotic PFCs) than in the abiotic PFCs. The biotic PFCs showed more consistent performance regardless of the operating temperature than the abiotic PFCs. The PFCs performance was better at higher DO concentrations (30-33 mg L-1) than at lower DO concentrations (8-9 and 0-2 mg L-1); however, gas purging used to adjust DO concentrations could adversely affect the biotic PFCs performance. This study demonstrates that PCMW treatment and electricity generation can be achieved using the fuel cell-based technology, and the PFCs performance can be optimized by adjusting the operating conditions.


Food and Chemical Toxicology | 2018

Photodegradation of tetracycline and sulfathiazole individually and in mixtures

Seong Ho Yun; Eun Hea Jho; Seulki Jeong; Soobin Choi; Youngjoo Kal; Sangwon Cha

Antibiotics in environment can be of concern as they can enter the food chain posing risks to ecosystems and human health. Photodegradation has been considered as a promising way of naturally degrading antibiotics in environment. Antibiotics are usually present in mixtures in environment; however, previous studies focused on individual compounds. Therefore, this study investigated the effect of UV irradiation on the degradation of tetracycline (TC) and sulfathiazole (STH) in individual solutions and mixtures. Under dark conditions, the initial masses of TC and STH were reduced by about 35% and 26%, respectively, over a 35 d-reaction period. With UV irradiation TC and STH were completely removed within 14 d and 35 d, respectively, regardless of the initial concentrations. Both the TC and STH removals were faster (i.e., 2-4 times) when they were in mixtures. This may be partly attributed to the byproducts such as sulfate that can promote indirect photolysis and partly to the enhanced hydrolysis due to changes in the solution pH. Overall, this study suggests that when photodegradation is used to remove antibiotics in water, the removal kinetics of antibiotics individually and in mixtures can be considered to develop more efficient treatment technologies.

Collaboration


Dive into the Eun Hea Jho's collaboration.

Top Co-Authors

Avatar

Kyoungphile Nam

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Won Jung Ju

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Guyoung Kang

Hankuk University of Foreign Studies

View shared research outputs
Top Co-Authors

Avatar

Junmo Ahn

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Seulki Jeong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kyoungphile Nam

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kyung Yang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sun Kyung Hwang

Hankuk University of Foreign Studies

View shared research outputs
Top Co-Authors

Avatar

Haein Keum

Hankuk University of Foreign Studies

View shared research outputs
Top Co-Authors

Avatar

Hosub Lee

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge