Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eun Hui Lee is active.

Publication


Featured researches published by Eun Hui Lee.


Journal of Biological Chemistry | 2006

Functional Coupling between TRPC3 and RyR1 Regulates the Expressions of Key Triadic Proteins

Eun Hui Lee; Gennady Cherednichenko; Isaac N. Pessah; Paul D. Allen

We have shown that TRPC3 (transient receptor potential channel canonical type 3) is sharply up-regulated during the early part of myotube differentiation and remains elevated in mature myotubes compared with myoblasts. To examine its functional roles in muscle, TRPC3 was “knocked down” in mouse primary skeletal myoblasts using retroviral-delivered small interference RNAs and single cell cloning. TRPC3 knockdown myoblasts (97.6 ± 1.9% reduction in mRNA) were differentiated into myotubes (TRPC3 KD) and subjected to functional and biochemical assays. By measuring rates of Mn2+ influx with Fura-2 and Ca2+ transients with Fluo-4, we found that neither excitation-coupled Ca2+ entry nor thapsigargin-induced store-operated Ca2+ entry was significantly altered in TRPC3 KD, indicating that expression of TRPC3 is not required for engaging either Ca2+ entry mechanism. In Ca2+ imaging experiments, the gain of excitation-contraction coupling and the amplitude of the Ca2+ release seen after direct RyR1 activation with caffeine was significantly reduced in TRPC3 KD. The decreased gain appears to be due to a decrease in RyR1 Ca2+ release channel activity, because sarcoplasmic reticulum (SR) Ca2+ content was not different between TRPC3 KD and wild-type myotubes. Immunoblot analysis demonstrated that TRPC1, calsequestrin, triadin, and junctophilin 1 were up-regulated (1.46 ± 1.91-, 1.42 ± 0.08-, 2.99 ± 0.32-, and 1.91 ± 0.26-fold, respectively) in TRPC3 KD. Based on these data, we conclude that expression of TRPC3 is tightly regulated during muscle cell differentiation and propose that functional interaction between TRPC3 and RyR1 may regulate the gain of SR Ca2+ release independent of SR Ca2+ load.


Journal of Biological Chemistry | 2004

N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor

Eun Hui Lee; Seong Hwan Rho; Soon Jae Kwon; Soo Hyun Eom; Paul D. Allen; Do Han Kim

It is known that the two types of FK506-binding proteins FKBP12 and FKBP12.6 are tightly associated with the skeletal (RyR1) and cardiac ryanodine receptors (RyR2), respectively, and their interactions are important for channel functions of the RyR. In the case of cardiac muscle, three amino acid residues (Gln-31, Asn-32, and Phe-59) of FKBP12.6 could be essential for the selective binding to RyR2 (Xin, H. B., Rogers, K., Qi, Y., Kanematsu, T., and Fleischer, S. (1999) J. Biol. Chem. 274, 15315–15319). In this study to identify amino acid residues of FKBP12 that are important for the selective binding to RyR1, we mutated 9 amino acid residues of FKBP12 that differ from the counterparts of FKBP12.6 (Q3E, R18A, E31Q, D32N, M49R, R57A, W59F, H94A, and K105A), and we examined binding properties of these mutants to RyR1 by in vitro binding assay by using glutathione S-transferase-fused proteins of the mutants and Triton X-100-solubilized, FKBP12-depleted rabbit skeletal sarcoplasmic reticulum vesicles. Among the nine mutants tested, only Q3E and R18A lost their selective binding ability to RyR1. Furthermore, co-immunoprecipitation of RyR1 with 33 various mutants for the 9 positions produced by introducing different size, charge, and hydrophobicity revealed that an integration of the hydrogen bonds by the irreplaceable Gln-3 and the hydrophobic interactions by the residues Arg-18 and Met-49 could be a possible mechanism for the binding of FKBP12 to RyR1. Therefore, these results suggest that the N-terminal regions of FKBP12 (Gln-3 and Arg-18) and Met-49 are essential and unique for binding of FKBP12 to RyR1 in skeletal muscle.


Journal of Biological Chemistry | 2007

Conformation-dependent stability of junctophilin 1 (JP1) and ryanodine receptor type 1 (RyR1) channel complex is mediated by their hyper-reactive thiols

Andrew J. Phimister; Jozsef Lango; Eun Hui Lee; Michael A. Ernst-Russell; Hiroshi Takeshima; Jianjie Ma; Paul D. Allen; Isaac N. Pessah

Junctophilin 1 (JP1), a 72-kDa protein localized at the skeletal muscle triad, is essential for stabilizing the close apposition of T-tubule and sarcoplasmic reticulum membranes to form junctions. In this study we report that rapid and selective labeling of hyper-reactive thiols found in both JP1 and ryanodine receptor type 1 (RyR1) with 7-diethylamino-3-(4′-maleimidylphenyl)-4-methylcoumarin, a fluorescent thiol-reactive probe, proceeded 12-fold faster under conditions that minimize RyR1 gating (e.g. 10 mm Mg2+) compared with conditions that promote high channel activity (e.g. 100 μm Ca2+, 10 mm caffeine, 5 mm ATP). The reactivity of these thiol groups was very sensitive to oxidation by naphthoquinone, H2O2, NO, or O2, all known modulators of the RyR1 channel complex. Using preparative SDS-PAGE, in-gel tryptic digestion, high pressure liquid chromatography, and mass spectrometry-based peptide sequencing, we identified 7-diethylamino-3-(4′-maleimidylphenyl)-4-methylcoumarin-thioether adducts on three cysteine residues of JP1 (101, 402, and 627); the remaining five cysteines of JP1 were unlabeled. Co-immunoprecipitation experiments demonstrated a physical interaction between JP1 and RyR1 that, like thiol reactivity, was sensitive to RyR1 conformation and chemical status of the hyper-reactive cysteines of JP1 and RyR1. These findings support a model in which JP1 interacts with the RyR1 channel complex in a conformationally sensitive manner and may contribute integral redox-sensing properties through reactive sulfhydryl chemistry.


European Journal of Neuroscience | 2003

Differential expression and cellular localization of doublecortin in the developing rat retina

Eun-Jin Lee; In-Beom Kim; Eun Hui Lee; Sung-Oh Kwon; Su-Ja Oh; Myung-Hoon Chun

Doublecortin is 40 kDa microtubule‐associated phosphoprotein required for neuronal migration and differentiation in various regions of the developing central nervous system. We have investigated the expression and cellular localization of doublecortin in the developing rat retina using immunocytochemistry and Western blot analysis. The expression of doublecortin was high from embryonic day 18 (E18) until E20 and was low during the postnatal period. The doublecortin immunoreactivity first appeared in a few radially orientated cells in the mantle zone of the primitive retina at E15. From E16 onward, the immunoreactivity appeared in two different regions: the inner part of the retina and middle of the neuroblastic layer. In the inner part, the somata of cells in the ganglion cell layer, in the distal row of the neuroblastic layer and profiles in the inner plexiform layer showed doublecortin immunoreactivity up to postnatal day 1 (P1). Afterwards, the doublecortin immunoreactivity persisted in the inner plexiform layer until P15, although the intensity decreased gradually with the maturation of the retina. In the middle of the neuroblastic layer, doublecortin immunoreactivity appeared in the radially orientated cells. These cells transformed into horizontal cells. The doublecortin immunoreactivity persisted in these cells up to P21. Given these results, doublecortin may play an important role in the migration and differentiation of specific neuronal populations in developmental stages of the rat retina.


Biochemical Journal | 2010

S165F mutation of junctophilin 2 affects Ca2+ signalling in skeletal muscle

Jin Seok Woo; Ji‑Hye Hwang; Jae‑Kyun Ko; Noah Weisleder; Do Han Kim; Jianjie Ma; Eun Hui Lee

JPs (junctophilins) contribute to the formation of junctional membrane complexes in muscle cells by physically linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. In humans with HCM (hypertrophic cardiomyopathy), mutations in JP2 are linked to altered Ca2+ signalling in cardiomyocytes; however, the effects of these mutations on skeletal muscle function have not been examined. In the present study, we investigated the role of the dominant-negative JP2-S165F mutation (which is associated with human HCM) in skeletal muscle. Consistent with the hypertrophy observed in human cardiac muscle, overexpression of JP2-S165F in primary mouse skeletal myotubes led to a significant increase in myotube diameter and resting cytosolic Ca2+ concentration. Single myotube Ca2+ imaging experiments showed reductions in both the excitation-contraction coupling gain and RyR (ryanodine receptor) 1-mediated Ca2+ release from the SR. Immunoprecipitation assays revealed defects in the PKC (protein kinase C)-mediated phosphorylation of the JP2-S165F mutant protein at Ser165 and in binding of JP2-S165F to the Ca2+ channel TRPC3 (transient receptor potential cation canonical-type channel 3) on the t-tubule membrane. Therefore both the hypertrophy and altered intracellular Ca2+ signalling in the JP2-S165F-expressing skeletal myotubes can be linked to altered phosphorylation of JP2 and/or altered cross-talk among Ca2+ channels on the t-tubule and SR membranes.


Biophysical Journal | 2002

Effects of Quercetin on Single Ca2+ Release Channel Behavior of Skeletal Muscle

Eun Hui Lee; Gerhard Meissner; Do Han Kim

Quercetin, a bioflavonoid, is known to affect Ca(2+) fluxes in sarcoplasmic reticulum, although its direct effect on Ca(2+) release channel (CRC) in sarcoplasmic reticulum has remained to be elucidated. The present study examined the effect of quercetin on the behavior of single skeletal CRC in planar lipid bilayer. The effect of caffeine was also studied for comparison. At very low [Ca(2+)](cis) (80 pM), quercetin activated CRC marginally, whereas at elevated [Ca(2+)](cis) (10 microM), both open probability (P(o)) and sensitivity to the drug increased markedly. Caffeine showed a similar tendency. Analysis of lifetimes for single CRC showed that quercetin and caffeine led to different mean open-time and closed-time constants and their proportions. Addition of 10 microM ryanodine to CRC activated by quercetin or caffeine led to the typical subconductance state (approximately 54%) and a subsequent addition of 5 microM ruthenium red completely blocked CRC activity. When 6 microM quercetin and 3 mM caffeine were added together to the cis side of CRC, a time-dependent increase of P(o) was observed (from mode 1 (0.376 +/- 0.043, n = 5) to mode 2 (0.854 +/- 0.062, n = 5)). On the other hand, no further activation was observed when quercetin was added after caffeine. Quercetin affected only the ascending phase of the bell-shaped Ca(2+) activation/inactivation curve, whereas caffeine affected both ascending and descending phases. [(3)H]ryanodine binding to sarcoplasmic reticulum showed that channel activity increased more by both quercetin and caffeine than by caffeine alone. These characteristic differences in the modes of activation of CRC by quercetin and caffeine suggest that the channel activation mechanisms and presumably the binding sites on CRC are different for the two drugs.


Biochemical Journal | 2004

Molecular basis of the high-affinity activation of type 1 ryanodine receptors by imperatoxin A

Chul Won Lee; Eun Hui Lee; Koh Takeuchi; Hideo Takahashi; Ichio Shimada; Kazuki Sato; Song Yub Shin; Do Han Kim; Jae Il Kim

Both imperatoxin A (IpTx(a)), a 33-residue peptide toxin from scorpion venom, and peptide A, derived from the II-III loop of dihydropyridine receptor (DHPR), interact specifically with the skeletal ryanodine receptor (RyR1), which is a Ca(2+)-release channel in the sarcoplasmic reticulum, but with considerably different affinities. IpTx(a) activates RyR1 with nanomolar affinity, whereas peptide A activates RyR1 at micromolar concentrations. To investigate the molecular basis for high-affinity activation of RyR1 by IpTx(a), we have determined the NMR solution structure of IpTx(a), and identified its functional surface by using alanine-scanning analogues. A detailed comparison of the functional surface profiles for two peptide activators revealed that IpTx(a) exhibits a large functional surface area (approx. 1900 A(2), where 1 A=0.1 nm), based on a short double-stranded antiparallel beta-sheet structure, while peptide A bears a much smaller functional surface area (approx. 800 A(2)), with the five consecutive basic residues (Arg(681), Lys(682), Arg(683), Arg(684) and Lys(685)) being clustered at the C-terminal end of the alpha-helix. The functional surface of IpTx(a) is composed of six essential residues (Leu(7), Lys(22), Arg(23), Arg(24), Arg(31) and Arg(33)) and several other important residues (His(6), Lys(8), Arg(9), Lys(11), Lys(19), Lys(20), Gly(25), Thr(26), Asn(27) and Lys(30)), indicating that amino acid residues involved in RyR1 activation make up over the half of the toxin molecule with the exception of cysteine residues. Taken together, these results suggest that the site where peptide A binds to RyR1 belongs to a subset of macrosites capable of being occupied by IpTx(a), resulting in differing the affinity and the mode of activation.


FEBS Letters | 2010

Galectin-3 secreted by human umbilical cord blood-derived mesenchymal stem cells reduces amyloid-β42 neurotoxicity in vitro

J.I. Kim; Dong Hyun Kim; Dal-Soo Kim; Ji Hyun Kim; Sang Young Jeong; Hong Bae Jeon; Eun Hui Lee; Yoon Sun Yang; Wonil Oh; Jong Wook Chang

In this study, we found that expression and secretion of galectin‐3 (GAL‐3) were upregulated by amyloid‐β42 (Aβ42) exposure in human umbilical cord blood‐derived mesenchymal stem cell (hUCB‐MSC) without cell death. Aβ42‐exposed rat primary cortical neuronal cells co‐treated with recombinant GAL‐3 were protected from neuronal death in a dose‐dependent manner. hUCB‐MSCs were cocultured with Aβ42‐exposed rat primary neuronal cells or the neuroblastoma cell line, SH‐SY5Y in a Transwell chamber. Coculture of hUCB‐MSCs reduced cell death of Aβ42‐exposed neurons and SH‐SY5Y cells. This neuroprotective effect of hUCB‐MSCs was reduced significantly by GAL‐3 siRNA. These data suggested that hUCB‐MSC‐derived GAL‐3 is a survival factor against Aβ42 neurotoxicity.


Journal of Biological Chemistry | 2012

Hypertrophy in Skeletal Myotubes Induced by Junctophilin-2 Mutant, Y141H, Involves an Increase in Store-operated Ca2+ Entry via Orai1

Jin Seok Woo; Chung-Hyun Cho; Keon Jin Lee; Do Han Kim; Jianjie Ma; Eun Hui Lee

Background: Junctophilin-2 (JP2) contributes to the formation of junctional membrane complexes (JMC) in striated muscle. Results: Different from the S165F mutant of JP2, Y141H induces hypertrophy in skeletal myotubes involving abnormal JMC and altered Ca2+ signaling due to the increased store-operated Ca2+ entry (SOCE) via Orai1. Conclusion: JP2 is linked to muscle hypertrophy via various Ca2+ signaling pathways. Significance: SOCE is a novel factor in understanding muscle hypertrophy. Junctophilins (JPs) play an important role in the formation of junctional membrane complexes (JMC) in striated muscle by physically linking the transverse-tubule and sarcoplasmic reticulum (SR) membranes. Researchers have found five JP2 mutants in humans with hypertrophic cardiomyopathy. Among these, Y141H and S165F are associated with severely altered Ca2+ signaling in cardiomyocytes. We previously reported that S165F also induced both hypertrophy and altered intracellular Ca2+ signaling in mouse skeletal myotubes. In the present study, we attempted to identify the dominant-negative role(s) of Y141H in primary mouse skeletal myotubes. Consistent with S165F, Y141H led to hypertrophy and altered Ca2+ signaling (a decrease in the gain of excitation-contraction coupling and an increase in the resting level of myoplasmic Ca2+). However, unlike S165F, neither ryanodine receptor 1-mediated Ca2+ release from the SR nor the phosphorylation of the mutated JP2 by protein kinase C was related to the altered Ca2+ signaling by Y141H. Instead, abnormal JMC and increased SOCE via Orai1 were found, suggesting that the hypertrophy caused by Y141H progressed differently from S165F. Therefore JP2 can be linked to skeletal muscle hypertrophy via various Ca2+ signaling pathways, and SOCE could be one of the causes of altered Ca2+ signaling observed in muscle hypertrophy.


Experimental and Molecular Medicine | 2010

TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts.

Jin Seok Woo; Chung-Hyun Cho; Do Han Kim; Eun Hui Lee

During membrane depolarization associated with skeletal excitation-contraction (EC) coupling, dihydropyridine receptor [DHPR, a L-type Ca2+ channel in the transverse (t)-tubule membrane] undergoes conformational changes that are transmitted to ryanodine receptor 1 [RyR1, an internal Ca2+-release channel in the sarcoplasmic reticulum (SR) membrane] causing Ca2+ release from the SR. Canonical-type transient receptor potential cation channel 3 (TRPC3), an extracellular Ca2+-entry channel in the t-tubule and plasma membrane, is required for full-gain of skeletal EC coupling. To examine additional role(s) for TRPC3 in skeletal muscle other than mediation of EC coupling, in the present study, we created a stable myoblast line with reduced TRPC3 expression and without α1SDHPR (MDG/TRPC3 KD myoblast) by knock-down of TRPC3 in α1SDHPR-null muscular dysgenic (MDG) myoblasts using retrovirus-delivered small interference RNAs in order to eliminate any DHPR-associated EC coupling-related events. Unlike wild-type or α1SDHPR-null MDG myoblasts, MDG/TRPC3 KD myoblasts exhibited dramatic changes in cellular morphology (e.g., unusual expansion of both cell volume and the plasma membrane, and multi-nuclei) and failed to differentiate into myotubes possibly due to increased Ca2+ content in the SR. These results suggest that TRPC3 plays an important role in the maintenance of skeletal muscle myoblasts and myotubes.

Collaboration


Dive into the Eun Hui Lee's collaboration.

Top Co-Authors

Avatar

Chung-Hyun Cho

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jin Seok Woo

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Keon Jin Lee

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Do Han Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mei Huang

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Paul D. Allen

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jang-Hyuk Yun

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ji-Hye Hwang

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Do Han Kim

Gwangju Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge