Eun-Hye Kim
Sungkyunkwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eun-Hye Kim.
Journal of Agricultural and Food Chemistry | 2008
Min-Young Kim; Philippe Seguin; Joung-Kuk Ahn; Jong-Jin Kim; Sechul Chun; Eun-Hye Kim; Su-Hyun Seo; Eun-Young Kang; Sun-Lim Kim; Yool-Jin Park; Hee-Myong Ro; Ill-Min Chung
A study was conducted to determine the content of phenolic compounds and the antioxidative activity of five edible and five medicinal mushrooms commonly cultivated in Korea. Phenolic compounds were analyzed using high performance liquid chromatography, and antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and superoxide dismutase activity. A total of 28 phenolic compounds were detected in the mushrooms studied. The average total concentration of phenolic compounds was 326 microg/g, the average being of 174 microg/g in edible mushrooms and 477 microg/g in medicinal mushrooms. The average total flavonoids concentration was 49 microg/g, with averages of 22 and 76 microg/g in edible and medicinal mushrooms, respectively. The DPPH radical scavenging activities ranged between 15 (Pleurotus eryngii) and 70% (Ganoderma lucidum) when reaction time was for 1 min. When reaction time was 30 min, the values ranged between 5 (Pleurotus eryngii) and 78% (Agaricus bisporus). The SOD activity averaged 28% among the 10 mushroom species, averages for edible and medicinal mushrooms being comparable. DPPH activities was significantly correlated (p < 0.01) with total content of phenolic compounds in edible mushrooms, while in medicinal mushrooms there was a significant correlation (p < 0.01) between SOD activity and total concentration of phenolic compounds. Numerous significant positive correlations were observed between phenolic compounds detected and antioxidative potential.
Journal of Agricultural and Food Chemistry | 2012
Eun-Hye Kim; Hee-Myong Ro; Sun-Lim Kim; Hong-Sig Kim; Ill-Min Chung
This study investigated the functional compounds, including isoflavones, phenolics, soyasapogenols, and tocopherols, that were detected in 204 soybean [ Glycine max (L.) Merrill] germplasms. The soybean samples were divided into three groups according to origin: America, China, and Korea. The soybean samples were also classified into three groups on the basis of 100-seed weight: small (<13 g), medium (13-24 g), and large (>24 g). Among the soybean germplasms, CSRV121 (Bosukkong) had the highest level of isoflavone content (4778.1 μg g(-1)), whereas CS01316 had the lowest isoflavone content (682.4 μg g(-1)). Of the soybeans from the three different countries of origin, those from Korea showed the highest average concentration of total isoflavones (2252.6 μg g(-1)). The small seeds had the highest average total isoflavone concentration (2520.0 μg g(-1)) of the three different seed sizes. Among the 204 soybean germplasms, CS01405 had the highest content of total phenolics (5219.6 μg g(-1)), and CSRV017 (Hwangkeumkong) had the lowest phenolic content (654.6 μg g(-1)). The mean concentrations of total phenolic compounds were 2729.1 μg g(-1) in American soybean seeds, 1680.4 μg g(-1) in Chinese soybean seeds, and 1977.6 μg g(-1) in Korean soybean seeds. Of the soybean seeds from the three different countries of origin, American soybean seeds had the highest average concentration of total phenolic compounds, and Korean varieties showed the second highest value. Small soybean seeds had the highest average content of total phenolic compounds (2241.7 μg g(-1)), whereas medium-sized (1926.8 μg g(-1)) and large (1949.9 μg g(-1)) soybeans had lower concentrations of phenolic compounds. In whole soybean germplasms, the level of total soyasapogenols was higher in CS01173 (1802.3 μg g(-1)) and CS01346 (1736.8 μg g(-1)) than in the other types of soybeans. The mean concentrations of total soyasapogenol were 1234.0 μg g(-1) in American, 1294.5 μg g(-1) in Chinese, and 1241.5 μg g(-1) in Korean soybean varieties. Chinese soybean varieties showed the highest mean concentration of total soyasapogenol, and Korean soybean seeds showed the second highest level. The medium-seed group had the highest soyasapogenol content (1269.3 μg g(-1)) of the seeds that were grouped by size. A larger amount of soyasapogenol B than soyasapogenol A was detected. In whole soybeans, CS01202 showed the highest level of total tocopherols (330.5 μg g(-1)), whereas CSRV056 (Pungsannamulkong) had the lowest content (153.3 μg g(-1)). Chinese soybeans had the highest average concentration of total tocopherols (255.1 μg g(-1)). By comparison, the medium-sized Chinese soybean group had the highest (256.1 μg g(-1)) average total tocopherol content.
Antimicrobial Agents and Chemotherapy | 2011
Thao Dang-Hien Tran; Hyog-Young Kwon; Eun-Hye Kim; Ki-Woo Kim; David E. Briles; Suhkneung Pyo; Dong-Kwon Rhee
ABSTRACT Antibiotic resistance and tolerance are increasing threats to global health as antibiotic-resistant bacteria can cause severe morbidity and mortality and can increase treatment cost 10-fold. Although several genes contributing to antibiotic tolerance among pneumococci have been identified, we report here that ClpL, a major heat shock protein, could modulate cell wall biosynthetic enzymes and lead to decreased penicillin susceptibility. On capsular type 1, 2, and 19 genetic backgrounds, mutants lacking ClpL were more susceptible to penicillin and had thinner cell walls than the parental strains, whereas a ClpL-overexpressing strain showed a higher resistance to penicillin and a thicker cell wall. Although exposure of Streptococcus pneumoniae D39 to penicillin inhibited expression of the major cell wall synthesis gene pbp2x, heat shock induced a ClpL-dependent increase in the mRNA levels and protein synthesized by pbp2x. Inducible ClpL expression correlated with PBP2x expression and penicillin susceptibility. Fractionation and electron micrograph data revealed that ClpL induced by heat shock is localized at the cell wall, and the ΔclpL showed significantly reduced net translocation of PBP2x into the cell wall. Moreover, coimmunoprecipitation with either ClpL or PBP2x antibody followed by reprobing with ClpL or PBP2x antibody showed an interaction between ClpL and PBP2x after heat stress. This interaction was confirmed by His tag pulldown assay with either ClpLHis6 or PBP2xHis6. Thus, ClpL stabilized pbp2x expression, interacted with PBP2x, and facilitated translocation of PBP2x, a key protein of cell wall synthesis process, contributing to the decrease of antibiotic susceptibility in S. pneumoniae.
Journal of Bacteriology | 2009
Jae Kap Jeong; Ohsuk Kwon; Yun Mi Lee; Doo Byoung Oh; Jung Mi Lee; Seonghun Kim; Eun-Hye Kim; Tu Nhat Le; Dong Kwon Rhee; Hyun Kang
Streptococcus pneumoniae is a causative agent of high morbidity and mortality. Although sugar moieties have been recognized as ligands for initial contact with the host, only a few exoglycosidases have been reported to occur in S. pneumoniae. In this study, a putative beta-galactosidase, encoded by the bgaC gene of S. pneumoniae, was characterized for its enzymatic activity and virulence. The recombinant BgaC protein, expressed and purified from Escherichia coli, was found to have a highly regiospecific and sugar-specific hydrolysis activity for the Galbeta1-3-GlcNAc moiety of oligosaccharides. Interestingly, the BgaC hydrolysis activity was localized at the cell surface of S. pneumoniae, indicating that BgaC is expressed as a surface protein although it does not have a typical signal sequence or membrane anchorage motif. The surface localization of BgaC was further supported by immunofluorescence microscopy analysis using an antibody raised against BgaC and by a reassociation assay with fluorescein isothiocyanate-labeled BgaC. Although the bgaC deletion mutation did not significantly attenuate the virulence of S. pneumoniae in vivo, the bgaC mutant strain showed relatively low numbers of viable cells compared to the wild type after 24 h of infection in vivo, whereas the mutant showed higher colonization levels at 6 and 24 h postinfection in vivo. Our data strongly indicate for the first time that S. pneumoniae bgaC encodes a surface beta-galactosidase with high substrate specificity that is significantly associated with the infection activity of pneumococci.
Allergy, Asthma and Immunology Research | 2014
Jung Hyun Lee; Ho Seok Lee; Mi Ran Park; Sang Woon Lee; Eun-Hye Kim; Joong Bum Cho; Jihyun Kim; Youngshin Han; Kweon Jung; Hae Kwan Cheong; Sang-Il Lee; Kangmo Ahn
Purpose This study was aimed to investigate the relationship between indoor air pollutant levels and residential environment in children with atopic dermatitis (AD) living in Seoul. Methods A total of 150 children with AD were included. Residential environment was assessed by questionnaires which were completed by their parents. To evaluate the level of exposure to the indoor air pollutants, concentrations of the indoor air pollutants including particulate matter with diameter less than 10 µm (PM10), formaldehyde, carbon dioxide (CO2), carbon monoxide (CO), nitrogen dioxide (NO2), Total Volatile Organic Compound (TVOC), benzene, toluene, ethyl-benzene, xylene, styrene, bacterial aerosols, and airborne fungi were measured. Results A significant difference was exhibited in the levels of PM10 in case of visible fungus on the walls (P=0.047). There was relationship between the construction year of the house, moving to a newly constructed building within 1 year and formaldehyde level. With the use of artificial air freshener, the differences were found in the concentrations of TVOC (P=0.003), benzene (P=0.015), toluene (P=0.012) and ethyl-benzene (P=0.027). The concentration of xylene was significantly high when oil was used as heating fuel (P=0.015). Styrene exhibited differences depending on building type and its concentrations were significantly high in a residential and commercial complex building (P=0.005). The indoor concentration of bacterial aerosols was significantly low with the use of air cleaner (P=0.045). High NO2, benzene concentrations were present in case of almost no ventilation (P=0.028 and P=0.028, respectively). Conclusions Individual residential environments are closely related with the levels of the indoor air pollutants. To alleviate AD symptoms, simple questions about residential environments such as visible fungus on the walls and the use of artificial air freshener are helpful to assess the possibility of increased indoor air pollutant levels when direct measurement is not available.
Vaccine | 2012
Eun-Hye Kim; Sang-Yoon Choi; Min-Kyoung Kwon; Thao Dang-Hien Tran; Sang-Sang Park; Kwang-Jun Lee; Song-Mee Bae; David E. Briles; Dong-Kwon Rhee
Streptococcus pneumoniae (pneumococcus) is responsible for significant morbidity and mortality in worldwide. After introduction of current pneumococcal vaccines, a marked decrease in the incidence of pneumococcal disease was observed. Unfortunately, serotype shifts in carriage and disease, including capsular switch and presence of antimicrobial resistance, have been found. Here we report live attenuated vaccine strain which is avirulent and can protect from systemic and mucosal pneumococcal diseases. Pep27, an autolysis-inducing factor of S. pneumoniae is known to mediate LytA-dependent and -independent lysis and it was thus expected to effect virulence. The loss of Pep27 had a much larger than expected decrease in virulence and has made the Pep27 mutant strain sufficiently avirulent to be used as a live vaccine. The pep27 mutation unexpectedly had lower level of capsular polysaccharide than the wild type (type 2, D39) strain. Moreover, the pep27 mutant showed rapid clearance by 24 h post intranasal infection, and was not detected in lung and blood suggesting that mutant could not invade into the tissue. Even when 2×10(8)CFU were injected intravenously the mutant was not detected in the blood or brain after 4 h. Whereas 4 h after injection of 6×10(6) CFU of the wild type parent D39 strain, bacteremia was readily detected. Two dose intranasal immunizations with the live pep27 mutant in the absence of adjuvant elicited IgG antibody and serotype-independent protection against lethal intranasal challenge. Thus Pep27 was essential for virulence, and intranasal immunization with the pep27 mutant could provide protective immunity.
Journal of Microbiology | 2011
Yung Mi Lee; Soyeon Kim; Jia Jung; Eun-Hye Kim; Kyeung Hee Cho; Franz Schinner; Rosa Margesin; Soon Gyu Hong; Hong Kum Lee
The anthropogenic effect on the microbial communities in alpine glacier cryoconites was investigated by cultivation and physiological characterization of bacteria from six cryoconite samples taken at sites with different amounts of human impact. Two hundred and forty seven bacterial isolates were included in Actinobacteria (9%, particularly Arthrobacter), Bacteroidetes (14%, particularly Olleya), Firmicutes (0.8%), Alphaproteobacteria (2%), Betaproteobacteria (16%, particularly Janthinobacterium), and Gammaproteobacteria (59%, particularly Pseudomonas). Among them, isolates of Arthrobacter were detected only in samples from sites with no human impact, while isolates affiliated with Enterobacteriaceae were detected only in samples from sites with strong human impact. Bacterial isolates included in Actinobacteria and Bacteroidetes were frequently isolated from pristine sites and showed low maximum growth temperature and enzyme secretion. Bacterial isolates included in Gammaproteobacteria were more frequently isolated from sites with stronger human impact and showed high maximum growth temperature and enzyme secretion. Ecotypic differences were not evident among isolates of Janthinobacterium lividum, Pseudomonas fluorescens, and Pseudomonas veronii, which were frequently isolated from sites with different degrees of anthropogenic effect.
Journal of Agricultural and Food Chemistry | 2012
Eun-Hye Kim; Sun-Lim Kim; Seung-Hyun Kim; Ill-Min Chung
The concentrations of isoflavones and anthocyanins in five soybean seed cultivars of three different planting dates were determined in this study. Among the seeds of three different planting dates, the highest concentration of average total isoflavones (4098 μg g(-1)) was measured in those from early July, whereas the lowest concentration of average total isoflavones (3238 μg g(-1)) was measured in those from late May. Anthocyanin compounds were detected only in the Cheongjakong 3 cultivar. Among the three different planting dates, late-planted Cheongjakong 3 accumulated the highest concentration of total anthocyanins (10103 μg g(-1)), whereas the variety at an earlier planting date exhibited the lowest concentration of average total anthocyanins (7115 μg g(-1)). On the basis of these results, it was concluded that environmental factors such as temperature and precipitation may change the isoflavone and anthocyanin contents of soybean, altering the nutritional values of soy products.
Environmental Health and Toxicology | 2011
Young-Min Kim; Soyeon Kim; Hae-Kwan Cheong; Eun-Hye Kim
Objectives In order to evaluate which temperature index is the best predictor for the health impact assessment of heat stress in Korea, several indexes were compared. Methods We adopted temperature, perceived temperature (PT), and apparent temperature (AT), as a heat stress index, and changes in the risk of death for Seoul and Daegu were estimated with 1℃ increases in those temperature indexes using generalized additive model (GAM) adjusted for the non-temperature related factors: time trends, seasonality, and air pollution. The estimated excess mortality and Akaikes Information Criterion (AIC) due to the increased temperature indexes for the 75th percentile in the summers from 2001 to 2008 were compared and analyzed to define the best predictor. Results For Seoul, all-cause mortality presented the highest percent increase (2.99% [95% CI, 2.43 to 3.54%]) in maximum temperature while AIC showed the lowest value when the all-cause daily death counts were fitted with the maximum PT for the 75th percentile of summer. For Daegu, all-cause mortality presented the greatest percent increase (3.52% [95% CI, 2.23 to 4.80%]) in minimum temperature and AIC showed the lowest value in maximum temperature. No lag effect was found in the association between temperature and mortality for Seoul, whereas for Daegu one-day lag effect was noted. Conclusions There was no one temperature measure that was superior to the others in summer. To adopt an appropriate temperature index, regional meteorological characteristics and the disease status of population should be considered.
Journal of Ethnopharmacology | 2013
Eun-Hye Kim; In-Hye Kim; Mi-Jeong Lee; Cuong Thach Nguyen; Jung-Ah Ha; SooCheol Lee; Sangdun Choi; Kwang-Tae Choi; Suhkneung Pyo; Dong-Kwon Rhee
AIM OF THE STUDY Ginseng has been used as an anti-stress agent, and its active ingredient, ginsenoside, is similar in structure to estrogen. However, the effect of ginseng on the stressed brain is not completely understood. The aim of this study is to understand systematically how red ginseng (RG) affects gene expressions in the brain of immobilization (IMO) stressed mice to elucidate its underlying mechanism. MATERIALS AND METHODS For in vivo experiments, mice were stressed by immobilization for 30, 45, or 60 min, and gene expression in the mice brain was analyzed by microarray and system biology. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling (TUNEL) staining, and gene expression by Western blot or qPCR. For in vitro study, the SK-N-SH neuroblastoma cells were stressed by H2O2 exposure. The resultant cytotoxicity was measured by MTT assay, and gene expression by Western blot, ELISA, or qPCR. RESULTS Microarray analysis of genes in IMO stressed mice brains showed that RG administration prior to IMO stress downregulated >40 genes including peptidyl arginine deiminase type 4 (PADI4). Interestingly, PADI4 was up-regulated by various stresses such as H2O2, acrylamide, and tunicamycin in neuroblastoma SK-N-SH cells but inhibited by RG. IMO stress and in vitro H2O2 stress depressed the estrogen receptor (ER)-β expression but not ERα. However, RG treatment increased ERβ expression both in vivo and in vitro. Comparative analysis regarding the networks by systems biology revealed that TNF-α plays a critical role in IMO stress, and the cell death associated network was much higher than other categories. Consistently, the IMO stress induced TNF-α and Cox-2 expressions, malondialdehyde (MDA), and cell death in the brain, whereas RG administration inhibited these inductions in vivo. siRNA and transient expression studies revealed that ERβ inhibited the PADI4 expression. CONCLUSION PADI4 could be used as an oxidative stress marker. RG seems to inhibit oxidative stress-inducible PADI4 by up-regulating ERβ expression in the brain thus protecting brain cells from apoptosis.