Eun Shik Choi
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eun Shik Choi.
Molecular Cell | 2009
Alison L. Pidoux; Eun Shik Choi; Johanna K.R. Abbott; Xingkun Liu; Alexander Kagansky; Araceli G. Castillo; Georgina L. Hamilton; William A. Richardson; Juri Rappsilber; Xiangwei He; Robin C. Allshire
Summary The mechanisms ensuring specific incorporation of CENP-A at centromeres are poorly understood. Mis16 and Mis18 are required for CENP-A localization at centromeres and form a complex that is conserved from fission yeast to human. Fission yeast sim1 mutants that alleviate kinetochore domain silencing are defective in Scm3Sp, the ortholog of budding yeast Scm3Sc. Scm3Sp depends on Mis16/18 for its centromere localization and like them is recruited to centromeres in late anaphase. Importantly, Scm3Sp coaffinity purifies with CENP-ACnp1 and associates with CENP-ACnp1 in vitro, yet localizes independently of intact CENP-ACnp1 chromatin and is differentially released from chromatin. While Scm3Sc has been proposed to form a unique hexameric nucleosome with CENP-ACse4 and histone H4 at budding yeast point centromeres, we favor a model in which Scm3Sp acts as a CENP-ACnp1 receptor/assembly factor, cooperating with Mis16 and Mis18 to receive CENP-ACnp1 from the Sim3 escort and mediate assembly of CENP-ACnp1 into subkinetochore chromatin.
Journal of Biological Chemistry | 2004
Hyun Soo Kim; Eun Shik Choi; Jin A. Shin; Yeun Kyu Jang; Sang Dai Park
A study of gene silencing within the mating-type region of fission yeast defines two distinct pathways responsible for the establishment of heterochromatin assembly. One is RNA interference-dependent and acts on centromere-homologous repeats (cenH). The other is a stochastic Swi6 (the fission yeast HP1 homolog)-dependent mechanism that is not fully understood. Here we find that activating transcription factor (Atf1) and Pcr1, the fission yeast bZIP transcription factors homologous to human ATF-2, are crucial for proper histone deacetylation of both H3 and H4. This deacetylation is a prerequisite for subsequent H3 lysine 9 methylation and Swi6-dependent heterochromatin assembly across the rest of the silent mating-type (mat) region lacking the RNA interference-dependent cenH repeat. Moreover, Atf1 and Pcr1 can form complexes with both a histone deacetylase, Clr6, and Swi6, and clr6 mutations affected the H3/H4 acetylation patterns, similar to the atf1 and pcr1 deletion mutant phenotypes at the endogenous mat loci and at the ctt1+ promoter region surrounding ATF/CRE-binding site. These data suggest that Atf1 and Pcr1 participate in an early step essential for heterochromatin assembly at the mat locus and silencing of transcriptional targets of Atf1. Furthermore, a phosphorylation event catalyzed by the conserved mitogen-activated protein kinase pathway is important for regulation of heterochromatin silencing by Atf1 and Pcr1. These findings suggest a role for the mitogen-activated protein kinase pathway and histone deacetylase in Swi6-based heterochromatin assembly.
Journal of Biological Chemistry | 2011
Eun Shik Choi; Annelie Strålfors; Araceli G. Castillo; Mickaël Durand-Dubief; Karl Ekwall; Robin C. Allshire
The histone H3 variant CENP-A is the most favored candidate for an epigenetic mark that specifies the centromere. In fission yeast, adjacent heterochromatin can direct CENP-ACnp1 chromatin establishment, but the underlying features governing where CENP-ACnp1 chromatin assembles are unknown. We show that, in addition to centromeric regions, a low level of CENP-ACnp1 associates with gene promoters where histone H3 is depleted by the activity of the Hrp1Chd1 chromatin-remodeling factor. Moreover, we demonstrate that noncoding RNAs are transcribed by RNA polymerase II (RNAPII) from CENP-ACnp1 chromatin at centromeres. These analyses reveal a similarity between centromeres and a subset of RNAPII genes and suggest a role for remodeling at RNAPII promoters within centromeres that influences the replacement of histone H3 with CENP-ACnp1.
PLOS Genetics | 2012
Eun Shik Choi; Annelie Strålfors; Sandra Catania; Araceli G. Castillo; J. Peter Svensson; Alison L. Pidoux; Karl Ekwall; Robin C. Allshire
Specialized chromatin containing CENP-A nucleosomes instead of H3 nucleosomes is found at all centromeres. However, the mechanisms that specify the locations at which CENP-A chromatin is assembled remain elusive in organisms with regional, epigenetically regulated centromeres. It is known that normal centromeric DNA is transcribed in several systems including the fission yeast, Schizosaccharomyces pombe. Here, we show that factors which preserve stable histone H3 chromatin during transcription also play a role in preventing promiscuous CENP-ACnp1 deposition in fission yeast. Mutations in the histone chaperone FACT impair the maintenance of H3 chromatin on transcribed regions and promote widespread CENP-ACnp1 incorporation at non-centromeric sites. FACT has little or no effect on CENP-ACnp1 assembly at endogenous centromeres where CENP-ACnp1 is normally assembled. In contrast, Clr6 complex II (Clr6-CII; equivalent to Rpd3S) histone deacetylase function has a more subtle impact on the stability of transcribed H3 chromatin and acts to prevent the ectopic accumulation of CENP-ACnp1 at specific loci, including subtelomeric regions, where CENP-ACnp1 is preferentially assembled. Moreover, defective Clr6-CII function allows the de novo assembly of CENP-ACnp1 chromatin on centromeric DNA, bypassing the normal requirement for heterochromatin. Thus, our analyses show that alterations in the process of chromatin assembly during transcription can destabilize H3 nucleosomes and thereby allow CENP-ACnp1 to assemble in its place. We propose that normal centromeres provide a specific chromatin context that limits reassembly of H3 chromatin during transcription and thereby promotes the establishment of CENP-ACnp1 chromatin and associated kinetochores. These findings have important implications for genetic and epigenetic processes involved in centromere specification.
Nucleic Acids Research | 2005
Eun Shik Choi; Jin A. Shin; Hyun Soo Kim; Yeun Kyu Jang
Recently, a histone H3 variant in Drosophila and humans, the H3.3 protein, was shown to replace canonical H3 in active chromatin in a replication-independent (RI) manner. In the fission yeast Schizosaccharomyces pombe, there exists a single form of H3, which is equivalent to H3.3 and is thought to participate in both replication-independent (RI) and replication-coupled (RC) nucleosome assembly. In this study, we show that RI deposition of H3 at heterochromatic regions is consistently lower than that at a gene-free euchromatic region, and deletion of the conserved heterochromatin-specific proteins Swi6 or Clr4 markedly increases RI deposition at heterochromatic regions such as the silent mating-type loci or centromeres. These results clearly show that RI deposition of H3 occurs preferentially in euchromatic regions. We also observed that RI deposition of H3 could be increased at the thi3+ gene when transcription is induced, indicating transcription further facilitates RI deposition of H3. Taken together, these observations demonstrate that selective deposition of histone H3.3 at transcriptionally active chromatin by the RI assembly pathway is conserved in fission yeast and, thus, our data support an essential role of histone H3 replacement in maintaining active chromatin among diverse eukaryotic organisms ranging from fission yeast to humans.
Journal of Biological Chemistry | 2012
Jaewon Min; Eun Shik Choi; Kwangwoo Hwang; Jimi Kim; Srihari Sampath; Ashok R. Venkitaraman; Hyunsook Lee
Inactivating mutations in the breast cancer susceptibility gene BRCA2 cause gross chromosomal rearrangements. Chromosome structural instability in the absence of BRCA2 is thought to result from defective homology-directed DNA repair. Here, we show that BRCA2 links the fidelity of telomere maintenance with genetic integrity. Absence of BRCA2 resulted in signs of dysfunctional telomeres, such as telomere shortening, erosions, and end fusions in proliferating mouse fibroblasts. BRCA2 localized to the telomeres in S phase in an ATR-dependent manner, and its absence resulted in the accumulation of common fragile sites, particularly at the G-rich lagging strand, and increased the telomere sister chromatid exchange in unchallenged cells. The incidence of common fragile sites and telomere sister chromatid exchange increased markedly after treatment with replication inhibitors. Congruently, telomere-induced foci were frequently observed in the absence of Brca2, denoting activation of the DNA damage response and abnormal chromosome end joining. These telomere end fusions constituted a significant portion of chromosome aberrations in Brca2-deficient cells. Our results suggest that BRCA2 is required for telomere homeostasis and may be particularly important for the replication of G-rich telomeric lagging strands.
PLOS ONE | 2013
Araceli G. Castillo; Alison L. Pidoux; Sandra Catania; Mickaël Durand-Dubief; Eun Shik Choi; Georgina L. Hamilton; Karl Ekwall; Robin C. Allshire
The histone H3 variant, CENP-A, is normally assembled upon canonical centromeric sequences, but there is no apparent obligate coupling of sequence and assembly, suggesting that centromere location can be epigenetically determined. To explore the tolerances and constraints on CENP-A deposition we investigated whether certain locations are favoured when additional CENP-ACnp1 is present in fission yeast cells. Our analyses show that additional CENP-ACnp1 accumulates within and close to heterochromatic centromeric outer repeats, and over regions adjacent to rDNA and telomeres. The use of minichromosome derivatives with unique DNA sequences internal to chromosome ends shows that telomeres are sufficient to direct CENP-ACnp1 deposition. However, chromosome ends are not required as CENP-ACnp1 deposition also occurs at telomere repeats inserted at an internal locus and correlates with the presence of H3K9 methylation near these repeats. The Ccq1 protein, which is known to bind telomere repeats and recruit telomerase, was found to be required to induce H3K9 methylation and thus promote the incorporation of CENP-ACnp1 near telomere repeats. These analyses demonstrate that at non-centromeric chromosomal locations the presence of heterochromatin influences the sites at which CENP-A is incorporated into chromatin and, thus, potentially the location of centromeres.
Molecular and Cellular Biology | 2002
Eun Shik Choi; Hyun Soo Kim; Yeun Kyu Jang; Seung Hwan Hong; Sang Dai Park
ABSTRACT Methylation of histone H3 has been linked to the assembly of higher-order chromatin structures. Very recently, several examples, including the Schizosaccharomyces pombe mating-type region, chicken β-globin locus, and inactive X-chromosome, revealed that H3-Lys9-methyl (Me) is associated with silent chromatin while H3-Lys4-Me is prominent in active chromatin. Surprisingly, it was shown that homologs of Drosophila Su(var)3-9 specifically methylate the Lys9 residue of histone H3. Here, to identify putative enzymes responsible for destabilization of heterochromatin, we screened genes whose overexpressions disrupt silencing at the silent mat3 locus in fission yeast. Interestingly, we identified two genes, rhp6+ and ubcX+ (ubiquitin-conjugating enzyme participating in silencing), both of which encode ubiquitin-conjugating enzymes. Their overexpression disrupted silencing at centromeres and telomeres as well as at mat3. Additionally, the overexpression interfered with centromeric function, as confirmed by elevated minichromosome loss and antimicrotubule drug sensitivity. On the contrary, deletion of rhp6+ or ubcX+ enhanced silencing at all heterochromatic regions tested, indicating that they are negative regulators of silencing. More importantly, chromatin immunoprecipitation showed that their overexpression alleviated the level of H3-Lys9-Me while enhancing the level of H3-Lys4-Me at the silent regions. On the contrary, their deletions enhanced the level of H3-Lys9-Me while alleviating that of H3-Lys4-Me. Taken together, the data suggest that two ubiquitin-conjugating enzymes, Rhp6 and UbcX, affect methylation of histone H3 at silent chromatin, which then reconfigures silencing.
Molecular Cell | 2005
Jin A. Shin; Eun Shik Choi; Hyun Soo Kim; Jenny C. Y. Ho; Felicity Z. Watts; Sang Dai Park; Yeun Kyu Jang
Molecules and Cells | 2002
Min Jung Park; Yeun Kyu Jang; Eun Shik Choi; Hyun Soo Kim; Sang Dai Park