Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eun-Taex Oh is active.

Publication


Featured researches published by Eun-Taex Oh.


Analytical Chemistry | 2016

Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission

Lok Nath Neupane; Eun-Taex Oh; Heon Joo Park; Keun-Hyeung Lee

A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response.


PLOS ONE | 2011

Endoplasmic Reticulum Stress-Induced JNK Activation Is a Critical Event Leading to Mitochondria-Mediated Cell Death Caused by β-Lapachone Treatment

Hyemi Lee; Moon-Taek Park; Bo-Hwa Choi; Eun-Taex Oh; Min-Jeong Song; Jeonghun Lee; Chulhee Kim; Byung Uk Lim; Heon Joo Park

Background β-lapachone (β-lap) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although β-lap has been reported to induce apoptosis in various cancer types in an NQO1-dependent manner, the signaling pathways by which β-lap causes apoptosis are poorly understood. Methodology/Principal Findings β-lap-induced apoptosis and related molecular signaling pathways in NQO1-negative and NQO1-overexpressing MDA-MB-231 cells were investigated. Pharmacological inhibitors or siRNAs against factors involved in β-lap-induced apoptosis were used to clarify the roles played by such factors in β-lap-activated apoptotic signaling pathways. β-lap leads to clonogenic cell death and apoptosis in an NQO1- dependent manner. Treatment of NQO1-overexpressing MDA-MB-231 cells with β-lap causes rapid disruption of mitochondrial membrane potential, nuclear translocation of AIF and Endo G from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNAs targeting AIF and Endo G effectively attenuate β-lap-induced clonogenic and apoptotic cell death. Moreover, β-lap induces cleavage of Bax, which accumulates in mitochondria, coinciding with the observed changes in mitochondria membrane potential. Pretreatment with Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, efficiently attenuates JNK activation caused by β-lap, and subsequent mitochondria-mediated cell death. In addition, β-lap-induced generation and mitochondrial translocation of cleaved Bax are efficiently blocked by JNK inhibition. Conclusions/Significance Our results indicate that β-lap triggers induction of endoplasmic reticulum (ER) stress, thereby leading to JNK activation and mitochondria-mediated apoptosis. The signaling pathways that we revealed in this study may significantly contribute to an improvement of NQO1-directed tumor therapies.


PLOS ONE | 2014

Response of Breast Cancer Cells and Cancer Stem Cells to Metformin and Hyperthermia Alone or Combined

Hyemi Lee; Heon Joo Park; Chang Shin Park; Eun-Taex Oh; Bo Hwa Choi; Brent W. Williams; Chung K. Lee; Chang W. Song

Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5–10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44high/CD24low cells of MCF-7 cells and, CD44high/CD24high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs) of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.


Investigational New Drugs | 2012

Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells

Eun-Taex Oh; Moon-Taek Park; Bo-Hwa Choi; Seonggu Ro; E. Choi; Seong-Yun Jeong; Heon Joo Park

SummaryHistone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N1-(3-(dimethylamino)propyl)-N8-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21Waf1/Cip1 proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.


Journal of Microbiological Methods | 2003

A rapid method for RNA preparation from Gram-positive bacteria.

Eun-Taex Oh; Jae-Seong So

We have developed a rapid method for preparation of RNA from various Gram-positive bacteria. Unlike some methods, this method does not require lysozyme and proteinase K. Instead, we used glass beads to break cells more efficiently. Using this method, we successfully isolated the total RNA from various Gram-positive bacteria. This method is rapid, simple, and more economic when compared to the previously reported ones. Prepared RNA can be used for the transcriptional analysis of various Gram-positive bacteria.


PLOS ONE | 2011

β-Lapachone Significantly Increases the Effect of Ionizing Radiation to Cause Mitochondrial Apoptosis via JNK Activation in Cancer Cells

Moon-Taek Park; Min-Jeong Song; Hyemi Lee; Eun-Taex Oh; Bo-Hwa Choi; Seong-Yun Jeong; E. Choi; Heon Joo Park

Background β-lapachone (β-lap), has been known to cause NQO1-dependnet death in cancer cells and sensitize cancer cells to ionizing radiation (IR). We investigated the mechanisms underlying the radiosensitization caused by β-lap. Methodology/Principal Findings β-lap enhanced the effect of IR to cause clonogenic cells in NQO1+-MDA-MB-231 cells but not in NQO1−-MDA-MB-231 cells. β-lap caused apoptosis only in NQO1+ cells and not in NQO1− cells and it markedly increased IR-induced apoptosis only in NQO1+ cells. Combined treatment of NQO1+ cells induced ROS generation, triggered ER stress and stimulated activation of ERK and JNK. Inhibition of ROS generation by NAC effectively attenuated the activation of ERK and JNK, induction of ER stress, and subsequent apoptosis. Importantly, inhibition of ERK abolished ROS generation and ER stress, whereas inhibition of JNK did not, indicating that positive feedback regulation between ERK activation and ROS generation triggers ER stress in response to combined treatment. Furthermore, prevention of ER stress completely blocked combination treatment-induced JNK activation and subsequent apoptotic cell death. In addition, combined treatment efficiently induced the mitochondrial translocation of cleaved Bax, disrupted mitochondrial membrane potential, and the nuclear translocation of AIF, all of which were efficiently blocked by a JNK inhibitor. Caspases 3, 8 and 9 were activated by combined treatment but inhibition of these caspases did not abolish apoptosis indicating caspase activation played a minor role in the induction of apoptosis. Conclusions/Significance β-lap causes NQO1-dependent radiosensitization of cancer cells. When NQO1+ cells are treated with combination of IR and β-lap, positive feedback regulation between ERK and ROS leads to ER stress causing JNK activation and mitochondrial translocation of cleaved Bax. The resultant decrease in mitochondrial membrane leads to translocation of AIF and apoptosis.


Anti-Cancer Drugs | 2009

Cisplatin enhances the anticancer effect of β-lapachone by upregulating NQO1

Kaoru Terai; Guang-Zhi Dong; Eun-Taex Oh; Moon-Taek Park; Yeunhwa Gu; C. W. Song; Heon Joo Park

NAD(P)H:quinone oxidoreductase (NQO1) has been reported to play an important role in cell death caused by &bgr;-lapachone (&bgr;-lap), 3,4-dihydro-22,2-dimethyl-2H-naphthol[1,22b]pyran-5,6-dione. This study investigated whether cisplatin (cis-diamminedichloroplatinum) sensitizes cancer cells to &bgr;-lap by upregulating NQO1. The cytotoxicity of cisplatin and &bgr;-lap alone or in combination against FSaII fibrosarcoma cells of C3H mice in vitro was determined with a clonogenic survival assay and assessment of &ggr;-H2AX foci formation, a hallmark of DNA double-strand breaks. The cellular sensitivity to &bgr;-lap progressively increased during the 24 h after cisplatin treatment. The expression and enzymatic activity of NQO1 also increased during the 24 h after cisplatin treatment, and dicoumarol, an inhibitor of NQO1, was found to nullify the cisplatin-induced increase in &bgr;-lap sensitivity. The role of NQO1 in the cell death caused by &bgr;-lap alone or in combination with cisplatin was further elucidated using NQO1-positive and NQO1-negative MDA-MB-231 human breast cancer cells. Cisplatin increased the sensitivity of the NQO1-positive but not the NQO1-negative MDA-MB-231 cells to &bgr;-lap treatment. Combined treatment with cisplatin and &bgr;-lap suppressed the growth of FSaII tumors in the legs of C3H mice in a manner greater than additive. It is concluded that cisplatin markedly increases the sensitivity of cancer to &bgr;-lap in vitro and in vivo by upregulating NQO1.


Nature Communications | 2016

NQO1 inhibits proteasome-mediated degradation of HIF-1α

Eun-Taex Oh; Jung Whan Kim; Joon Mee Kim; Soo Jung Kim; Jae Seon Lee; Soon Sun Hong; Justin Goodwin; Robin J. Ruthenborg; Myung Gu Jung; Hae-June Lee; Chul Ho Lee; Eun Sung Park; Chulhee Kim; Heon Joo Park

Overexpression of NQO1 is associated with poor prognosis in human cancers including breast, colon, cervix, lung and pancreas. Yet, the molecular mechanisms underlying the pro-tumorigenic capacities of NQO1 have not been fully elucidated. Here we show a previously undescribed function for NQO1 in stabilizing HIF-1α, a master transcription factor of oxygen homeostasis that has been implicated in the survival, proliferation and malignant progression of cancers. We demonstrate that NQO1 directly binds to the oxygen-dependent domain of HIF-1α and inhibits the proteasome-mediated degradation of HIF-1α by preventing PHDs from interacting with HIF-1α. NQO1 knockdown in human colorectal and breast cancer cell lines suppresses HIF-1 signalling and tumour growth. Consistent with this pro-tumorigenic function for NQO1, high NQO1 expression levels correlate with increased HIF-1α expression and poor colorectal cancer patient survival. These results collectively reveal a function of NQO1 in the oxygen-sensing mechanism that regulates HIF-1α stability in cancers.


Journal of Biochemistry and Molecular Biology | 2015

Implications of NQO1 in cancer therapy

Eun-Taex Oh; Heon Joo Park

NAD(P)H:quinone oxidoreductase (NQO1), an obligatory two-electron reductase, is a ubiquitous cytosolic enzyme that catalyzes the reduction of quinone substrates. The NQO1- mediated two-electron reduction of quinones can be either chemoprotection/detoxification or a chemotherapeutic response, depending on the target quinones. When toxic quinones are reduced by NQO1, they are conjugated with glutathione or glucuronic acid and excreted from the cells. Based on this protective effect of NQO1, the use of dietary compounds to induce the expression of NQO1 has emerged as a promising strategy for cancer prevention. On the other hand, NQO1-mediated two-electron reduction converts certain quinone compounds (such as mitomycin C, E09, RH1 and β-lapachone) to cytotoxic agents, leading to cell death. It has been known that NQO1 is expressed at high levels in numerous human cancers, including breast, colon, cervix, lung, and pancreas, as compared with normal tissues. This implies that tumors can be preferentially damaged relative to normal tissue by cytotoxic quinone drugs. Importantly, NQO1 has been shown to stabilize many proteins, including p53 and p33ING1b, by inhibiting their proteasomal degradation. This review will summarize the biological roles of NQO1 in cancer, with emphasis on recent findings and the potential of NQO1 as a therapeutic target for the cancer therapy. [BMB Reports 2015; 48(11): 609-617]


Oncogene | 2014

Radiation-induced angiogenic signaling pathway in endothelial cells obtained from normal and cancer tissue of human breast

Eun-Taex Oh; Moon-Taek Park; Min-Jeong Song; Hyun-Shik Lee; Young Up Cho; Sei Joong Kim; Young Chae Chu; E. Choi; Heon Joo Park

Despite strong possibility that endothelial cells (ECs) of tumors and normal tissues may differ in various aspects, most previous studies on ECs have used normal cells. Here, we purified ECs from tumorous and normal human breast tissues, and studied the effect of radiation on angiogenesis and relevant molecular mechanisms in these cells. We found that in normal tissue-derived ECs (NECs), 4 Gy irradiation increased tube formation, matrix metalloproteinase 2 (MMP-2) expression and extracellular signal-regulated kinase (ERK) pathway activation. In cancer-derived ECs (CECs), however, 4 Gy irradiation significantly reduced tube formation, increased the production of angiostatin and interleukin-6 (IL-6), and upregulated AKT and c-Jun N-terminal kinase (JNK) pathway activation. Knockdown experiments showed that siMMP-2 efficiently inhibited tube formation by irradiated NECs, whereas siPlasminogen effectively attenuated the radiation-induced suppression of tube formation and the upregulation of angiostatin in CECs. Moreover, siIL-6 clearly inhibited the radiation-induced generation of angiostatin in CECs. Inhibition of ERK with a pharmacological inhibitor or small interfering RNAs (siRNAs) markedly suppressed the radiation-induced tube formation and MMP-2 upregulation in NECs, whereas the inhibition of either AKT or JNK with pharmacological inhibitor or siRNA treatment of CECs markedly attenuated the inhibition of tube formation and the upregulation of angiostatin and IL-6 caused by 4 Gy irradiation. These observations collectively demonstrate that there are distinct differences in the radiation responses of NECs and CECs, and might provide important clues for improving the efficacy of radiation therapy.

Collaboration


Dive into the Eun-Taex Oh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyemi Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge