Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eun-Yeung Gong is active.

Publication


Featured researches published by Eun-Yeung Gong.


Free Radical Biology and Medicine | 2009

ROS inhibit the expression of testicular steroidogenic enzyme genes via the suppression of Nur77 transactivation.

Seung-Yon Lee; Eun-Yeung Gong; Cheol Yi Hong; Keon-Hee Kim; Jung-Soo Han; Jae Chun Ryu; Ho Zoon Chae; Chul-Ho Yun; Keesook Lee

Steroidogenesis decreases with aging in the testis, whereas the levels of reactive oxygen species (ROS) increase. In addition, ROS have been reported to inhibit testicular steroidogenesis. Here, we investigated the effects of ROS on the transcriptional activity of Nur77, one of the major transcription factors that regulate the expression of steroidogenic enzyme genes. ROS signaling inhibited Nur77 transactivation, which was diminished by either treatment with c-Jun N-terminal kinase (JNK) inhibitor or the expression of a dominant negative form of JNK. This suggests the involvement of JNK signaling, which elevates the expression of c-Jun as well as its phosphorylation in Leydig cells. In transient transfection assays, c-Jun suppressed Nur77 transactivation in a dose-dependent manner. Further studies using c-Jun mutants revealed that the protein level of c-Jun, but not phosphorylation itself, was important for the suppression of Nur77 transactivation. Nur77 directly interacted with c-Jun in vivo, which blocked the DNA binding activity of Nur77. Together, these results suggest that ROS signaling-mediated c-Jun upregulation suppresses the expression of steroidogenic enzyme genes by inhibiting Nur77 transactivation, resulting in the reduction of testicular steroidogenesis. These findings may provide a mechanistic explanation for the age-related decline in testicular steroid hormone production.


Journal of Biological Chemistry | 2010

Anti-steroidogenic Factor ARR19 Inhibits Testicular Steroidogenesis through the Suppression of Nur77 Transactivation

Imteyaz Qamar; Eun-Yeung Gong; Yeawon Kim; Chin-Hee Song; Hyun Joo Lee; Sang-Young Chun; Keesook Lee

ARR19 (androgen receptor corepressor-19 kDa), a leucine-rich protein whose expression is down-regulated by luteinizing hormone and cAMP, is differentially expressed during the development of Leydig cells and inhibits testicular steroidogenesis by reducing the expression of steroidogenic enzymes. However, the molecular events behind the suppression of testicular steroidogenesis are unknown. In the present study, we demonstrate that ARR19 inhibits the transactivation of orphan nuclear receptor Nur77, which is one of the major transcription factors that regulate the expression of steroidogenic enzyme genes in Leydig cells. ARR19 physically interacts with Nur77 and suppresses Nur77-induced promoter activity of steroidogenic enzyme genes including StAR, P450c17, and 3β-HSD in Leydig cells. Transient transfection and chromatin immunoprecipitation assays revealed that ARR19-mediated reduced expression of steroidogenic enzyme genes was likely due to the interference of SRC-1 recruitment to Nur77 protein on the promoter of steroidogenic enzyme genes. These findings suggest that ARR19 acts as a novel coregulator of Nur77, in turn regulating Nur77-induced testicular steroidogenesis, and may play an important role in the development and function of testicular Leydig cells.


Reproduction | 2009

Expression of Atp8b3 in murine testis and its characterization as a testis specific P-type ATPase

Eun-Yeung Gong; Eunsook Park; Hyun Joo Lee; Keesook Lee

Spermatogenesis is a complex process that produces haploid motile sperms from diploid spermatogonia through dramatic morphological and biochemical changes. P-type ATPases, which support a variety of cellular processes, have been shown to play a role in the functioning of sperm. In this study, we isolated one putative androgen-regulated gene, which is the previously reported sperm-specific aminophospholipid transporter (Atp8b3, previously known as Saplt), and explored its expression pattern in murine testis and its biochemical characteristics as a P-type ATPase. Atp8b3 is exclusively expressed in the testis and its expression is developmentally regulated during testicular development. Immunohistochemistry of the testis reveals that Atp8b3 is expressed only in germ cells, especially haploid spermatids, and the protein is localized in developing acrosomes. As expected, from its primary amino acid sequence, ATP8B3 has an ATPase activity and is phosphorylated by an ATP-producing acylphosphate intermediate, which is a signature property of the P-Type ATPases. Together, ATP8B3 may play a role in acrosome development and/or in sperm function during fertilization.


Journal of Biological Chemistry | 2012

Structure-based Virtual Screening and Identification of a Novel Androgen Receptor Antagonist

Chin-Hee Song; Su Hui Yang; Eunsook Park; Suk Hee Cho; Eun-Yeung Gong; Daulat Bikram Khadka; Won-Jea Cho; Keesook Lee

Background: The androgen receptor (AR) is the primary drug target for prostate cancer treatment. Results: We have identified a novel AR antagonist, the compound 6-(3,4-dihydro-1H-isoquinolin-2-yl)-N-(6-methylpyridin-2-yl)nicotinamide (DIMN) that inhibits the growth of AR-positive prostate cancer cells. Conclusion: DIMN has been identified as a new lead structure targeting the AR. Significance: This novel AR antagonist could be a useful therapeutic agent for prostate cancer treatment. Hormonal therapies, mainly combinations of anti-androgens and androgen deprivation, have been the mainstay treatment for advanced prostate cancer because the androgen-androgen receptor (AR) system plays a pivotal role in the development and progression of prostate cancers. However, the emergence of androgen resistance, largely due to inefficient anti-hormone action, limits the therapeutic usefulness of these therapies. Here, we report that 6-(3,4-dihydro-1H-isoquinolin-2-yl)-N-(6-methylpyridin-2-yl)nicotinamide (DIMN) acts as a novel anti-androgenic compound that may be effective in the treatment of both androgen-dependent and androgen-independent prostate cancers. Through AR structure-based virtual screening using the FlexX docking model, fifty-four compounds were selected and further screened for AR antagonism via cell-based tests. One compound, DIMN, showed an antagonistic effect specific to AR with comparable potency to that of the classical AR antagonists, hydroxyflutamide and bicalutamide. Consistent with their anti-androgenic activity, DIMN inhibited the growth of androgen-dependent LNCaP prostate cancer cells. Interestingly, the compound also suppressed the growth of androgen-independent C4–2 and CWR22rv prostate cancer cells, which express a functional AR, but did not suppress the growth of the AR-negative prostate cancer cells PPC-1, DU145, and R3327-AT3.1. Taken together, the results suggest that the synthetic compound DIMN is a novel anti-androgen and strong candidate for useful therapeutic agent against early stage to advanced prostate cancer.


Molecular and Cellular Biology | 2005

Modulation of Androgen Receptor Transactivation by the SWI3-Related Gene Product (SRG3) in Multiple Ways

Cheol Yi Hong; Ji Ho Suh; Kabsun Kim; Eun-Yeung Gong; Sung Ho Jeon; Myunggon Ko; Rho Hyun Seong; Hyuk Bang Kwon; Keesook Lee

ABSTRACT The SWI3-related gene product (SRG3), a component of the mouse SWI/SNF complex, has been suggested to have an alternative function. Here, we demonstrate that in the prostate transactivation of the androgen receptor (AR) is modulated by SRG3 in multiple ways. The expression of SRG3, which is developmentally regulated in the prostate, is induced by androgen through AR. SRG3 in turn enhances the transactivation of AR, providing a positive feedback regulatory loop. The SRG3 coactivation of AR transactivation is achieved through the recruitment of coactivator SRC-1, the protein level of which is upregulated by SRG3, providing another pathway of positive regulation. Interestingly, SRG3 coactivation of AR transactivation is fully functional in BRG1/BRM-deficient C33A cells and the AR/SRG3/SRC-1 complex formed in vivo contains neither BRG1 nor BRM protein, suggesting the possibility of an SRG3 function independent of the SWI/SNF complex. Importantly, the AR/SRG3/SRC-1 complex occupies androgen response elements on the endogenous SRG3 and PSA promoter in an androgen-dependent manner in mouse prostate and LNCaP cells, respectively, inducing gene expression. These results suggest that the multiple positive regulatory mechanisms of AR transactivation by SRG3 may be important for the rapid proliferation of prostate cells during prostate development and regeneration.


Journal of Biological Chemistry | 2009

ARR19 (Androgen Receptor Corepressor of 19 kDa), an Antisteroidogenic Factor, Is Regulated by GATA-1 in Testicular Leydig Cells

Imteyaz Qamar; Eunsook Park; Eun-Yeung Gong; Hyun Joo Lee; Keesook Lee

ARR19 (androgen receptor corepressor of 19 kDa), which encodes for a leucine-rich protein, is expressed abundantly in the testis. Further analyses revealed that ARR19 was expressed in Leydig cells, and its expression was differentially regulated during Leydig cell development. Adenovirus-mediated overexpression of ARR19 in Leydig cells inhibited testicular steroidogenesis, down-regulating the expression of steroidogenic enzymes, which suggests that ARR19 is an antisteroidogenic factor. Interestingly, cAMP/luteinizing hormone attenuated ARR19 expression in a fashion similar to that of GATA-1, which was previously reported to be down-regulated by cAMP. Sequence analysis of the Arr19 promoter revealed the presence of two putative GATA-1 binding motifs. Further analyses with 5′ deletion and point mutants of putative GATA-1 binding motifs showed that these GATA-1 binding sites were critical for high promoter activity. CREB-binding protein coactivated GATA-1 and markedly increased the activity of the Arr19 promoter. Both GATA-1 and CREB-binding proteins occupied the GATA-1 motifs within the Arr19 promoter, which was repressed by cAMP treatment. Altogether, these findings demonstrate that ARR19 is the target gene of GATA-1 and suggest that ARR19 gene expression in testicular Leydig cells is regulated by luteinizing hormone/cAMP signaling via the control of GATA-1 expression, resulting in the control of testicular steroidogenesis.


Journal of Medicinal Chemistry | 2013

SAR Based Design of Nicotinamides as a Novel Class of Androgen Receptor Antagonists for Prostate Cancer

Su Hui Yang; Chin-Hee Song; Hue Thi My Van; Eunsook Park; Daulat Bikram Khadka; Eun-Yeung Gong; Keesook Lee; Won-Jea Cho

Molecular knowledge of pure antagonism and systematic SAR study offered a direction for structural optimization of DIMN to provide nicotinamides as a novel series of AR antagonists. Nicotinamides with extended linear scaffold bearing sterically bulky alkoxy groups on isoquinoline end were synthesized for H12 displacement. AR binding affinity and molecular basis of antiandrogenic effect establish the optimized derivatives, 7au and 7bb, as promising candidates of second generation AR antagonists for advanced prostate cancer.


Biochemical and Biophysical Research Communications | 2012

Testicular steroidogenesis is locally regulated by androgen via suppression of Nur77.

Chin-Hee Song; Eun-Yeung Gong; Ji soo Park; Keesook Lee

Steroidogenesis in the testis is regulated by a negative feedback mechanism through the hypothalamus-pituitary-testis axis. Recent studies suggest that besides this long-loop regulation, testicular steroidogenesis is also locally regulated by androgen. However, the molecular mechanism behind this additional regulatory pathway has been poorly addressed. In the present study, we demonstrate that liganded androgen receptor (AR) suppresses the transcriptional activity of Nur77 on steroidogenic enzyme gene promoters, affecting testicular steroidogenesis. AR physically interacts and colocalizes with Nur77 in the nucleus in the presence of androgen. AR inhibits Nur77 transactivation by competing mainly with coactivators such as SRC-1 for Nur77 binding. These results suggest that androgen, through binding to AR, directly acts as a signal inhibiting the expression of steroidogenic enzyme genes in Leydig cells, eventually resulting in decreased testicular steroidogenesis. These findings strongly support the hypothesis that androgen acts locally to regulate testicular steroidogenesis, and may provide its action mechanism.


Cancer Science | 2010

Hakai acts as a coregulator of estrogen receptor alpha in breast cancer cells

Eun-Yeung Gong; Eunsook Park; Keesook Lee

Estrogen receptors play a key role in breast cancer development. One of the current therapeutic strategies for the treatment of estrogen receptor (ER)‐α‐positive breast cancers relies on the blockade of ERα transcriptional activity. In the present study, we characterized Hakai, originally characterized as an E‐cadherin binding protein, as a strong blockade of ERα in breast cancer cells. We showed that Hakai inhibited the transcriptional activity of ERα by binding directly to ERα. The DNA‐binding domain of ERα was found to be responsible for its interaction with Hakai. Hakai competed with ERα coactivators, such as steroid receptor coactivator‐1 (SRC‐1) and glucocoriticord receptor interacting protein‐1 (GRIP‐1), for the modulation of ERα transactivation, while its ubiquitin‐ligase activity was not required. Further, overexpression of Hakai inhibited the proliferation and migration of breast cancer cells. Taken together, these results suggest that Hakai is a novel corepressor of ERα and may play a negative role in the development and progression of breast cancers. (Cancer Sci 2010)


The Journal of Steroid Biochemistry and Molecular Biology | 2008

Reduced testicular steroidogenesis in tumor necrosis factor-α knockout mice

Ji Ho Suh; Eun-Yeung Gong; Cheol Yi Hong; Eunsook Park; Ryun Sup Ahn; Kwang Sung Park; Keesook Lee

We previously demonstrated that the expression of Mullerian inhibiting substance (MIS) in Sertoli cells is downregulated by tumor necrosis factor alpha (TNF-alpha), which is secreted by meiotic germ cells, in mouse testes. Several studies have reported that MIS that is secreted by Sertoli cells inhibits steroidogenesis and, thus, the synthesis of testosterone in testicular Leydig cells. Here, we demonstrate that in TNF-alpha knockout testes, which show high levels of MIS, steroidogenesis is decreased compared to that in wild-type testes. The levels of testosterone and the mRNA levels of steroidogenesis-related genes were significantly lower after puberty in TNF-alpha knockout testes than in wild-type testes. Furthermore, the number of sperm was reduced in TNF-alpha knockout mice. Histological analysis revealed that spermatogenesis is also delayed in TNF-alpha knockout testes. In conclusion, TNF-alpha knockout mice show reduced testicular steroidogenesis, which is likely due to the high level of testicular MIS compared to that seen in wild-type mice.

Collaboration


Dive into the Eun-Yeung Gong's collaboration.

Top Co-Authors

Avatar

Keesook Lee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Eunsook Park

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Cheol Yi Hong

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chin-Hee Song

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Soma Chattopadhyay

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Ji Ho Suh

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyuk Bang Kwon

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Ryun Sup Ahn

Chonnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge