Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eung-Sam Kim is active.

Publication


Featured researches published by Eung-Sam Kim.


ACS Nano | 2010

Single-File Diffusion of Protein Drugs through Cylindrical Nanochannels

Seung Yun Yang; Jeong-A Yang; Eung-Sam Kim; Gumhye Jeon; Eun Ju Oh; Kwan Yong Choi; Sei Kwang Hahn; Jin Kon Kim

A new drug delivery device using cylindrical block copolymer nanochannels was successfully developed for controlled protein drug delivery applications. Depending on the hydrodynamic diameter of the protein drugs, the pore size in cylindrical nanochannels could be controlled precisely down to 6 nm by Au deposition. Zero-order release of bovine serum albumin (BSA) and human growth hormone (hGH) by single-file diffusion, which has been observed for gas diffusion through zeolite pores, was realized up to 2 months without protein denaturation. Furthermore, a nearly constant in vivo release of hGH from the drug delivery nanodevice implanted to Sprague-Dawley (SD) rats was continued up to 3 weeks, demonstrating the feasibility for long-term controlled delivery of therapeutic protein drugs.


Biomaterials | 2012

Transdermal delivery of hyaluronic acid -- human growth hormone conjugate.

Jeong-A Yang; Eung-Sam Kim; Jung Hee Kwon; Hyemin Kim; Ji Hye Shin; Seok Hyun Yun; Kwan Yong Choi; Sei Kwang Hahn

Hyaluronic acid (HA) is one of the major components of extracellular matrix (ECM). Keratinocyte and fibroblast are known to have HA receptors in the skin. Fibroblast also has human growth hormone (hGH) receptors. In this work, HA-hGH conjugate was developed as a receptor mediated transdermal delivery system of protein drugs. HA-hGH conjugate was synthesized by specific coupling reaction between aldehyde modified HA and the N-terminal amine group of hGH. We could confirm the proliferative effect of HA on keratinocyte and fibroblast, and the biological activity of HA-hGH conjugate in fibroblast with an elevated expression level of phosphorylated Janus kinase 2 (p-JAK2). Interestingly, fluorescence microscopy clearly visualized the dramatically enhanced penetration of HA-hGH conjugate through the dorsal skin of mice after topical treatment with FITC labeled HA-hGH conjugate. According to pharmacokinetic analysis, HA-hGH conjugate appeared to be delivered through the skin into the blood stream possibly by the receptor mediated transdermal delivery. This work confirms the feasibility of using the HA-hGH conjugate as a model system for the receptor mediated transdermal delivery of protein drugs and their further exploitation for various cosmetic and tissue engineering applications.


international conference on micro electro mechanical systems | 1999

Effect of holes and edges on the squeeze film damping of perforated micromechanical structures

Eung-Sam Kim; Young-Ho Cho; Moon-Uhn Kim

This paper investigates the squeeze film damping of a perforated planar micromechanical structure that oscillates in the normal direction to the substrate. Special focus has been placed on the size and number of perforations influencing the squeeze film damping. Theoretical models and test structures of the squeeze film damping have been developed for the transversely oscillating perforated plates. A set of nine different test structures, having three different sizes with three different numbers of perforations, has been fabricated and tested. The experimental Q-factors, measured from the fabricated test structures, are compared with the theoretical values, estimated from finite element analysis. It is found that the finite element analysis overestimates the Q-factors up to 150% of the experimental values. Major discrepancy comes from the inaccuracy of the zero pressure condition, placed by the finite element analysis along the perforated edges.


Proteomics | 2014

Comparative interactomes of SIRT6 and SIRT7: Implication of functional links to aging

Namgyu Lee; Dae-Kyum Kim; Eung-Sam Kim; Sung Jin Park; Jung-Hee Kwon; Jihye Shin; Seon-Min Park; Young Ho Moon; Hee Jung Wang; Yong Song Gho; Kwan Yong Choi

Sirtuins are NAD+‐dependent deacetylases that regulate a range of cellular processes. Although diverse functions of sirtuins have been proposed, those functions of SIRT6 and SIRT7 that are mediated by their interacting proteins remain elusive. In the present study, we identified SIRT6‐ and SIRT7‐interacting proteins, and compared their interactomes to investigate functional links. Our interactomes revealed 136 interacting proteins for SIRT6 and 233 for SIRT7 while confirming seven and 111 proteins identified previously for SIRT6 and SIRT7, respectively. Comparison of SIRT6 and SIRT7 interactomes under the same experimental conditions disclosed 111 shared proteins, implying related functional links. The interaction networks of interactomes indicated biological processes associated with DNA repair, chromatin assembly, and aging. Interactions of two highly acetylated proteins, nucleophosmin (NPM1) and nucleolin, with SIRT6 and SIRT7 were confirmed by co‐immunoprecipitation. NPM1 was found to be deacetylated by both SIRT6 and SIRT7. In senescent cells, the acetylation level of NPM1 was increased in conjunction with decreased levels of SIRT6 and SIRT7, suggesting that the acetylation of NPM1 could be regulated by SIRT6 and SIRT7 in the aging process. Our comparative interactomic study of SIRT6 and SIRT7 implies important functional links to aging by their associations with interacting proteins. All MS data have been deposited in the ProteomeXchange with identifiers PXD000159 and PXD000850 (http://proteomecentral.proteomexchange.org/dataset/PXD000159, http://proteomecentral.proteomexchange.org/dataset/PXD000850).


International Journal of Nanomedicine | 2014

Emerging nanotechnology approaches in tissue engineering and regenerative medicine

Eung-Sam Kim; Eun Hyun Ahn; Tal Dvir; Deok Ho Kim

The history of human kind suggests that there has been a correlation between global population growth and major events in science and technology over the last three centuries. Sharp increases in the world’s population have been triggered by the industrial revolution and scientific and technological breakthroughs including: the advent of the railways, discovery of penicillin and deoxyribonucleic acid (DNA), and the invention of the computer.1 Since the 20th century, interdisciplinary areas in the physical and biological sciences have accelerated the progress of biomedical applications. The recent integration of emerging nanotechnology into biology and biomedicine has resulted in a range of innovative nanoengineering efforts for the repair and regeneration of tissues and organs.2 Thus, it is expected that nanoengineering approaches to biomedical applications can contribute to addressing the present issue of personal and global health care and its economic burden for more than 7 billion people. Why are we paying attention to nanoengineering for biomedical applications? The size of most biomolecules ranges from 0.2 nm to 200 nm (Figure 1). Research has focused on control of the interaction and localization of biomolecules even at the single-molecule level using ever-evolving nanotechnology.3 The evidence indicates that cells can respond to nanoscale changes in the dynamic extracellular matrix and vice versa. Biomimetic nanopatterns alone can direct the differentiation of stem cells without involvement of exogenous soluble biochemical factors.4,5 This regulation of cellular behavior by nanotechnology is one of many examples demonstrating the significant applications of nanoengineering in biomedicine. This special issue includes four review papers and seven research articles that provide an insight into current nanoengineering approaches to the repair or regeneration of tissues and organs. Figure 1 Schematic size scale of biological objects.


Cancer Letters | 2010

HMGB2 stabilizes p53 by interfering with E6/E6AP-mediated p53 degradation in human papillomavirus-positive HeLa cells

Daekyun Lee; Jung-Hee Kwon; Eui Ho Kim; Eung-Sam Kim; Kwan Yong Choi

We investigated the effect of HMGB2 on the stability of p53 protein in HeLa cells. Overexpression of HMGB2 led to accumulation of the p53 protein, whereas HMGB2 knockdown with siRNA resulted in a substantial decrease in the p53 protein level. The HMGB2-dependent increase of p53 stability was specific for HPV-positive HeLa cells as HCT116 and MCF7 cell lines did not demonstrate this response. Co-expression of HMGB2 and HPV E6 prevented HPV E6 protein-mediated ubiquitination and degradation of p53. FACS analysis exhibited that HeLa cells transfected with HMGB2 displayed decreased cell proliferation, with a concomitant increase of the p53 protein and arrest of the cell cycle, predominantly in G1 phase. Our findings collectively suggest that HMGB2 could stabilize p53 by interfering with E6/E6AP-mediated p53 degradation in HPV-positive HeLa cells.


Autophagy | 2013

BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK.

Chang Wook Park; Sun Mi Hong; Eung-Sam Kim; Jung Hee Kwon; Kyong-Tai Kim; Hong Gil Nam; Kwan Yong Choi

BNIP3 (BCL2/adenovirus E1B 19 kDa interacting protein 3) is an atypical BH3-only protein that is induced by hypoxia-inducible factor 1 (HIF1) under hypoxia. BNIP3 is primarily regulated at the transcriptional level. However, little is known about the underlying mechanism of BNIP3 degradation. In this study, we found that BNIP3 was downregulated when hypoxia was accompanied by amino acid starvation. The BNIP3 downregulation did not occur at the transcription level and was independent of HIF1A. BNIP3 was primarily degraded by the proteasome, but BNIP3 was subjected to both proteasomal and autophagic degradation in response to starvation. The autophagic degradation of BNIP3 was dependent on ATG7 and MAP1LC3. We determined that autophagic degradation of BNIP3 was specifically regulated by ULK1 via the MTOR-AMPK pathway. Moreover, we confirmed that BNIP3 could play a protective role in tumor cells under hypoxia, and the treatment with Torin1, an MTOR inhibitor, decreased the BNIP3 level and enhanced the death of hypoxic tumor cells.


Materials Science and Engineering: C | 2013

Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability.

Seung Yun Yang; Eung-Sam Kim; Gumhye Jeon; Kwan Yong Choi; Jin Kon Kim

We independently controlled surface topography and wettability of polystyrene (PS) films by CF4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ~11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering.


Journal of the American Chemical Society | 2014

Reading Single DNA with DNA Polymerase Followed by Atomic Force Microscopy

Youngkyu Kim; Eung-Sam Kim; Yoonhee Lee; Joung-Hun Kim; Bong Chu Shim; Seong Moon Cho; Joon Won Park

The importance of DNA sequencing in the life sciences and personalized medicine is continually increasing. Single-molecule sequencing methods have been developed to analyze DNA directly without the need for amplification. Here, we present a new approach to sequencing single DNA molecules using atomic force microscopy (AFM). In our approach, four surface-conjugated nucleotides were examined sequentially with a DNA polymerase-immobilized AFM tip. By observing the specific rupture events upon examination of a matching nucleotide, we could determine the template base bound in the polymerases active site. The subsequent incorporation of the complementary base in solution enabled the next base to be read. Additionally, we observed that the DNA polymerase could incorporate the surface-conjugated dGTP when the applied force was controlled by employing the force-clamp mode.


Analyst | 2012

Synergistic effect of orientation and lateral spacing of protein G on an on-chip immunoassay

Eung-Sam Kim; Chang Kyoon Shim; Jae Wook Lee; Joon Won Park; Kwan Yong Choi

The proper orientation and lateral spacing of antibody molecules are a crucial element for an on-chip immunoassay in which the antibody or its antigen-binding fragments are immobilized on a solid surface. We covalently immobilized a modified protein G (Cys-protein G: protein G with only an N-terminal cysteine) on a dendron-coated surface to control its orientation and lateral spacing simultaneously. The cysteine-specific immobilization of Cys-protein G through the N-terminal cysteine resulted in 2.2-fold higher binding efficiency of Cys-protein G to IgG(2a) capture antibody than its random immobilization via lysine residues. The lateral spacing of 3.2 nm due to the surface modification with the 9-acid dendron molecule contributed to a 1.5-fold increase in the antibody-binding ability of Cys-protein G. Topographic images of atomic force microscopy exhibited a uniform coverage of Cys-protein G molecules immobilized on the thiol-reactive 9-acid dendron surface and homogeneous distribution of antibody bound to Cys-protein G. In the sandwich immunoassay, the control of the orientation of Cys-protein G led to 10-fold higher detection capability for rIL-2 compared with the randomly oriented protein G. The synergistic advantage of the unidirectional orientation and homogeneous lateral spacing of Cys-protein Gs on the dendron-coated surface can be applied to the development of more sensitive and reproducible antibody microarrays.

Collaboration


Dive into the Eung-Sam Kim's collaboration.

Top Co-Authors

Avatar

Kwan Yong Choi

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Joon Won Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jeong-A Yang

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ji Hye Shin

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jung-Hee Kwon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sei Kwang Hahn

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyung Jin Cha

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jin Kon Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seung Yun Yang

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge