Eunmi Koh
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eunmi Koh.
Journal of Agricultural and Food Chemistry | 2009
Miki Hiemori; Eunmi Koh; Alyson E. Mitchell
The composition and thermal stability of anthocyanins in black rice (Oryza sativa L. japonica var. SBR) produced in California were investigated. Six anthocyanin pigments were identified and quantified by high performance liquid chromatography using photo diode-array detection (HPLC-PDA) and electrospray ionization mass spectrometry [LC-(ESI)MS/MS]. The predominant anthocyanins are cyanidin-3-glucoside (572.47 microg/g; 91.13% of total) and peonidin-3-glucoside (29.78 microg/g; 4.74% of total). Minor constituents included three cyanidin-dihexoside isomers and one cyanidin hexoside. Thermal stability of anthocyanins was assessed in rice cooked using a rice cooker, pressure cooker, or on a gas range. All cooking methods caused significant (P < 0.001) decreases in the anthocyanins identified. Pressure cooking resulted in the greatest loss of cyanidin-3-glucoside (79.8%) followed by the rice cooker (74.2%) and gas range (65.4%). Conversely, levels of protocatechuic acid increased 2.7 to 3.4 times in response to all cooking methods. These findings indicate that cooking black rice results in the thermal degradation of cyanidin-3-glucoside and concomitant production of protocatechuic acid.
Journal of Agricultural and Food Chemistry | 2012
Eunmi Koh; Suthawan Charoenprasert; Alyson E. Mitchell
This study was undertaken to compare the levels of ascorbic acid, vitamin C, flavonoids, nitrate, and oxalate in 27 spinach varieties grown in certified organic and conventional cropping systems. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-(ESI)MS/MS) of methanolic extracts of spinach demonstrated 17 flavonoids, including glucuronides and acylated di- and triglycosides of methylated and methylenedioxyderivatives of 6-oxygenated flavonoids. The mean levels of ascorbic acid and flavonoids were significantly (p < 0.001) higher in the organically grown [40.48 ± 6.16 and 2.83 ± 0.03 mg/kg of fresh weight (FW)] spinach compared to the conventionally grown spinach (25.75 ± 6.12 and 2.27 ± 0.02 mg/kg of FW). Conversely, the mean levels of nitrate were significantly (p < 0.001) higher in the conventionally grown spinach compared to the organically grown spinach. No significant effects were observed in the oxalate content of spinach from either production system. The levels of nitrate correlated negatively with those of ascorbic acid, vitamin C, and total flavonoids and showed a positive correlation with the oxalate content. These results suggest that organic cropping systems result in spinach with lower levels of nitrates and higher levels of flavonoids and ascorbic acid.
Journal of the Science of Food and Agriculture | 2012
Eunmi Koh; Suthawan Charoenprasert; Alyson E. Mitchell
BACKGROUND The effects of industrial tomato paste processing and long-term (12 months) ambient storage on the content and stability of quercetin, kaempferol, ascorbic acid (AA), dehydroascorbic acid (DHAA), β-carotene and lycopene were evaluated in a commercially produced tomato paste. RESULTS The initial thermal treatment (hot break; 93 °C for 5 min) resulted in significant reductions in quercetin (54%), kaempferol (61%), AA (63%) and β-carotene (30%), whereas subsequent processing steps (e.g. evaporation and sterilization) did not result in marked changes in these compounds. Lycopene was stable during hot break but decreased by 20% through evaporation and sterilization. The ratio of DHAA:vitamin C increased during hot break to 23%, whereas the ratio of DHAA:vitamin C remained relatively low in subsequent processing steps, indicating that AA was not oxidized. AA decreased with prolonged storage, with only 13% remaining at 12 months. The carotenoids and quercetin remained stable through 12 months of ambient storage. CONCLUSIONS Tomato pomace contained significant amounts of carotenoids and flavonoids, indicating that it may be an underutilized processing byproduct.
Journal of the Science of Food and Agriculture | 2013
Eunmi Koh; Stephen Kaffka; Alyson E. Mitchell
BACKGROUND α-Tomatine, synthesized by Lycopersicon and some Solanum species, is a steroidal glycoalkaloid which functions to protect against pathogens and insects. Although glycoalkaloids are generally considered toxic, α-tomatine appears to be well tolerated in humans. α-Tomatine has numerous potential health benefits including the ability to inhibit cancer cell growth in in vitro studies. α-Tomatine is influenced by numerous agronomic factors including fertilization and nitrogen availability. Herein, the levels of α-tomatine were compared in dried tomato samples (Lycopersicon esculentum L. cv. Halley 3155) produced in organic and conventional cropping systems that had been archived over the period from 1994 to 2004 from the Long Term Research on Agricultural Systems project (LTRAS) at UC Davis. RESULTS The α-tomatine levels of tomatoes in both cropping systems ranged from 4.29 to 111.85 µg g(-1) dry weight. Mean levels of α-tomatine were significantly higher in the organically grown tomatoes than conventional ones (P < 0.001). In the organic management system, α-tomatine content was also significantly (P < 0.001) different between cropping years, suggesting that other influencing factors such as environmental conditions also affect α-tomatine content in tomato. CONCLUSIONS The organically produced tomatoes had higher average α-tomatine content than their conventional counterpart over the 10-year study. Significant annual variability in the α-tomatine content in tomatoes was also observed and suggests that environmental factors, external to nitrogen fertilization, influence α-tomatine content in tomatoes.
Nutrition Research and Practice | 2012
Eunmi Koh; Hyehyung Shin; Miyong Yon; Ji Woon Nam; Yoonna Lee; Dohee Kim; Jeeyeon Lee; Meehye Kim; Sung-Kug Park; Hoon Choi; Cho-il Kim
Previous Korean total diet studies (KTDSs) have estimated dietary exposure to toxic chemicals based on 110-120 representative foods selected from over 500 foods appeared in the Korea National Health & Nutrition Examination Surveys (KNHANES), which would result in a possible underestimation. In order to find measures for a closer-to-real estimate of dietary exposure to heavy metals, this study examined the feasibility of mapping foods to the representative foods in the KTDS by comparing estimates. In mapping, those foods not analyzed in the 2009 KTDS (443 out of 559 foods appeared in the 2007 KNHANES) were mapped to the 114 representative foods used in the 2009 KTDS based on the closeness in regards to biological systematics and morphological similarity. Dietary exposures to total mercury and lead were re-estimated using the content of total mercury and lead in 114 foods analyzed in the 2009 KTDS, food intake, and individuals own body weight for respondents in the 2007 KNHANES instead of mean body weight of Koreans used in the 2009 KTDS. The re-estimates of exposure with mapping were approximately 50% higher than the original estimates reported in the 2009 KTDS. In addition, mapping enabled the comparison of percentile distribution of the exposure among populations of different age groups. In conclusion, estimates via mapping resulted in a more comprehensive estimation of dietary exposure to heavy metals present in foods that Koreans consume.
Journal of Agricultural and Food Chemistry | 2007
Alyson E. Mitchell; Yun-Jeong Hong; Eunmi Koh; Diane M. Barrett; D. E. Bryant; R. Ford Denison; Stephen Kaffka
Journal of Food Composition and Analysis | 2009
Eunmi Koh; K.M.S. Wimalasiri; Alexander W. Chassy; Alyson E. Mitchell
Journal of community nutrition | 2011
Miyong Yon; Yoonna Lee; Dohee Kim; Jeeyeon Lee; Eunmi Koh; Eunjeong Nam; Hyehyung Shin; Baeg Won Kang; Jong Wook Kim; Seok Heo; Hea young Cho; Cho il Kim
Journal of community nutrition | 2012
Chulhee Lee; Dae Il Kim; Jeonglim Hong; Eunmi Koh; Baeg Won Kang; Jong Wook Kim; Hye Kyung Park; Cho il Kim
Journal of Food Biochemistry | 2011
Eunmi Koh; Alyson E. Mitchell