Eunsoo Do
Chung-Ang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eunsoo Do.
Fungal Genetics and Biology | 2012
Jeongmi Kim; Yong-Joon Cho; Eunsoo Do; Jaehyuk Choi; Guanggan Hu; Brigitte Cadieux; Jongsik Chun; Younghoon Lee; James W. Kronstad; Won Hee Jung
The high-affinity reductive iron uptake system that includes a ferroxidase (Cfo1) and an iron permease (Cft1) is critical for the pathogenesis of Cryptococcus neoformans. In addition, a mutant lacking CFO1 or CFT1 not only has reduced iron uptake but also displays a markedly increased susceptibility to azole antifungal drugs. Altered antifungal susceptibility of the mutants was of particular interest because the iron uptake system has been proposed as an alternative target for antifungal treatment. In this study, we used transcriptome analysis to begin exploring the molecular mechanisms of altered antifungal susceptibility in a cfo1 mutant. The wild-type strain and the cfo1 mutant were cultured with or without the azole antifungal drug fluconazole and their transcriptomes were compared following sequencing with Illumina Genome Analyzer IIx (GAIIx) technology. As expected, treatment of both strains with fluconazole caused elevated expression of genes in the ergosterol biosynthetic pathway that includes the target enzyme Erg11. Additionally, genes differentially expressed in the cfo1 mutant were involved in iron uptake and homeostasis, mitochondrial functions and respiration. The cfo1 mutant also displayed phenotypes consistent with these changes including a reduced ratio of NAD(+)/NADH and down-regulation of Fe-S cluster synthesis. Moreover, combination treatment of the wild-type strain with fluconazole and the respiration inhibitor diphenyleneiodonium dramatically increased susceptibility to fluconazole. This result supports the hypothesis that down-regulation of genes required for respiration contributed to the altered fluconazole susceptibility of the cfo1 mutant. Overall, our data suggest that iron uptake and homeostasis play a key role in antifungal susceptibility and could be used as novel targets for combination treatment of cryptococcosis. Indeed, we found that iron chelation in combination with fluconazole treatment synergistically inhibited the growth of C. neoformans.
Mycobiology | 2013
Minji Park; Eunsoo Do; Won Hee Jung
Abstract Pathogenic microbes secrete various enzymes with lipolytic activities to facilitate their survival within the host. Lipolytic enzymes include extracellular lipases and phospholipases, and several lines of evidence have suggested that these enzymes contribute to the virulence of pathogenic fungi. Candida albicans and Cryptococcus neoformans are the most commonly isolated human fungal pathogens, and several biochemical and molecular approaches have identified their extracellular lipolytic enzymes. The role of lipases and phospholipases in the virulence of C. albicans has been extensively studied, and these enzymes have been shown to contribute to C. albicans morphological transition, colonization, cytotoxicity, and penetration to the host. While not much is known about the lipases in C. neoformans, the roles of phospholipases in the dissemination of fungal cells in the host and in signaling pathways have been described. Lipolytic enzymes may also influence the survival of the lipophilic cutaneous pathogenic yeast Malassezia species within the host, and an unusually high number of lipase-coding genes may complement the lipid dependency of this fungus. This review briefly describes the current understanding of the lipolytic enzymes in major human fungal pathogens, namely C. albicans, C. neoformans, and Malassezia spp.
Medical Mycology | 2016
Eunsoo Do; Guanggan Hu; Mélissa Caza; James W. Kronstad; Won Hee Jung
Zinc is an essential element in living organisms and a cofactor for various metalloproteins. To disseminate and survive, a pathogenic microbe must obtain zinc from the host, which is an environment with extremely limited zinc availability. In this study, we investigated the roles of the ZIP family zinc transporters Zip1 and Zip2 in the human pathogenic fungus Cryptococcus neoformans Zip1 and Zip2 are homologous to Zrt1 and Zrt2 of the model fungus, Saccharomyces cerevisiae, respectively. We found that the expression of ZIP1 was regulated by the zinc concentration in the environment. Furthermore, the mutant lacking ZIP1 displayed a severe growth defect under zinc-limited conditions, while the mutant lacking ZIP2 displayed normal growth. Inductively coupled plasma-atomic emission spectroscopy analysis showed that the absence of Zip1 expression significantly reduced total cellular zinc levels relative to that in the wild type, while overexpression of Zip1 was associated with increased cellular zinc levels. These findings suggested that Zip1 plays roles in zinc uptake in C. neoformans We also constructed a Zip1-FLAG fusion protein and found, by immunofluorescence, not only that the protein was localized to the periphery implying it is a membrane transporter, but also that the protein was N-glycosylated. Furthermore, the mutant lacking ZIP1 showed attenuated virulence in a murine inhalation model of cryptococcosis and reduced survival within murine macrophages. Overall, our data suggest that Zip1 plays essential roles in zinc transport and the virulence of C. neoformans.
Fungal Genetics and Biology | 2015
Eunsoo Do; Guanggan Hu; Mélissa Caza; Débora L. Oliveira; James W. Kronstad; Won Hee Jung
Amino acid biosynthetic pathways that are absent in mammals are considered an attractive target for antifungal therapy. Leucine biosynthesis is one such target pathway, consisting of a five-step conversion process starting from the valine precursor 2-keto-isovalerate. Isopropylmalate dehydrogenase (Leu1) is an Fe-S cluster protein that is required for leucine biosynthesis in the model fungus Saccharomyces cerevisiae. The human pathogenic fungus Cryptococcus neoformans possesses an ortholog of S. cerevisiae Leu1, and our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability. In this study, we characterized the role of Leu1 in iron homeostasis and the virulence of C. neoformans. We found that deletion of LEU1 caused leucine auxotrophy and that Leu1 may play a role in the mitochondrial-cytoplasmic Fe-S cluster balance. Whereas cytoplasmic Fe-S protein levels were not affected, mitochondrial Fe-S proteins were up-regulated in the leu1 mutant, suggesting that Leu1 mainly influences mitochondrial iron metabolism. The leu1 mutant also displayed increased sensitivity to oxidative stress and cell wall/membrane disrupting agents, which may have been caused by mitochondrial dysfunction. Furthermore, the leu1 mutant was deficient in capsule formation and showed attenuated virulence in a mouse inhalation model of cryptococcosis. Overall, our results indicate that Leu1 plays a role in iron metabolism and is required for virulence in C. neoformans.
Molecular Microbiology | 2015
Guanggan Hu; Mélissa Caza; Brigitte Cadieux; Erik Bakkeren; Eunsoo Do; Won Hee Jung; James W. Kronstad
Iron availability is a key determinant of virulence in the pathogenic fungus Cryptococcus neoformans. Previous work revealed that the ESCRT (endosomal sorting complex required for transport) protein Vps23 functions in iron acquisition, capsule formation and virulence. Here, we further characterized the ESCRT machinery to demonstrate that defects in the ESCRT‐II and III complexes caused reduced capsule attachment, impaired growth on haem and resistance to non‐iron metalloprotoporphyrins. The ESCRT mutants shared several phenotypes with a mutant lacking the pH‐response regulator Rim101, and in other fungi, the ESCRT machinery is known to activate Rim101 via proteolytic cleavage. We therefore expressed a truncated and activated version of Rim101 in the ESCRT mutants and found that this allele restored capsule formation but not growth on haem, thus suggesting a Rim101‐independent contribution to haem uptake. We also demonstrated that the ESCRT machinery acts downstream of the cAMP/protein kinase A pathway to influence capsule elaboration. Defects in the ESCRT components also attenuated virulence in macrophage survival assays and a mouse model of cryptococcosis to a greater extent than reported for loss of Rim101. Overall, these results indicate that the ESCRT complexes function in capsule elaboration, haem uptake and virulence via Rim101‐dependent and independent mechanisms.
Current Opinion in Microbiology | 2013
Won Hee Jung; Eunsoo Do
Iron sequestration by the vertebrate host is considered an efficient defense mechanism against pathogenic microbes. However, this mechanism, so called nutritional immunity, is often overcome by the iron acquisition systems that have evolved in microbial pathogens. Numerous studies have been carried out to identify the key components of these systems and to understand their underlying mechanisms, including recent investigations in the basidiomycete fungal pathogen Cryptococcus neoformans. Iron acquisition is essential for the survival and pathogenesis of this fungus within vertebrate hosts. Growing evidence suggests that the fungus is able to utilize several different iron sources available in the host, and that the intracellular or extracellular localization of the pathogen influences its iron acquisition strategy. Herein, we review current findings on the components and regulatory elements of the iron acquisition systems in C. neoformans.
Biochemical and Biophysical Research Communications | 2016
Eunsoo Do; Minji Park; Guanggan Hu; Mélissa Caza; James W. Kronstad; Won Hee Jung
The lysine biosynthesis pathway via α-aminoadipate in fungi is considered an attractive target for antifungal drugs due to its absence in mammalian hosts. The iron-sulfur cluster-containing enzyme homoaconitase converts homocitrate to homoisocitrate in the lysine biosynthetic pathway, and is encoded by LYS4 in the model yeast Saccharomyces cerevisiae. In this study, we identified the ortholog of LYS4 in the human fungal pathogen, Cryptococcus neoformans, and found that LYS4 expression is regulated by iron levels and by the iron-related transcription factors Hap3 and HapX. Deletion of the LYS4 gene resulted in lysine auxotrophy suggesting that Lys4 is essential for lysine biosynthesis. Our study also revealed that lysine uptake was mediated by two amino acid permeases, Aap2 and Aap3, and influenced by nitrogen catabolite repression (NCR). Furthermore, the lys4 mutant showed increased sensitivity to oxidative stress, agents that challenge cell wall/membrane integrity, and azole antifungal drugs. We showed that these phenotypes were due in part to impaired mitochondrial function as a result of LYS4 deletion, which we propose disrupts iron homeostasis in the organelle. The combination of defects are consistent with our observation that the lys4 mutant was attenuated virulence in a mouse inhalation model of cryptococcosis.
bioRxiv | 2018
Rodgoun Attarian; Guanggan Hu; Mélissa Caza; Eddy Sánchez-León; Daniel Croll; Eunsoo Do; Horacio Bach; Tricia A. Missall; Jennifer K. Lodge; Won Hee Jung; James W. Kronstad
The acquisition of iron and the maintenance of iron homeostasis are important aspects of the virulence in the pathogenic fungus Cryptococcus neoformans. In this study, we identified the monothiol glutaredoxin Grx4 as a binding partner of Cir1, a master regulator of iron-responsive genes and virulence factor elaboration in C. neoformans. Monothiol glutaredoxins are important regulators of iron homeostasis because of their conserved roles in [2Fe-2S] cluster sensing and trafficking. We confirmed that Grx4 binds Cir1 and demonstrated that iron repletion promotes the relocalization of Grx4 from the nucleus to the cytoplasm. Nuclear retention is partially dependent on Cir1 and also influenced by treatment with the proteasome inhibitor bortezomib. Cir1 remains in the nucleus in both iron replete and iron limiting conditions. We also found that a grx4Δ mutant displayed iron-related phenotypes similar to those of a cir1Δ mutant, including poor growth upon iron deprivation. Importantly, a grx4Δ mutant was avirulent in mice, a phenotype consistent with observed defects in the key virulence determinants, capsule and melanin, and poor growth at 37°C. A comparative transcriptome analysis of a grx4Δ mutant and the WT strain in low iron and iron-replete conditions confirmed a central role for Grx4 in iron homeostasis. Dysregulation of iron-related metabolism was consistent with grx4Δ mutant phenotypes related to oxidative stress, mitochondrial function, and DNA repair. Overall, the phenotypes of the grx4Δ mutant and the RNA-Seq analysis support the hypothesis that Grx4 functions as a sensor of iron levels, in part through an interaction with Cir1, to extensively regulate iron homeostasis and contribute to virulence.
Medical Mycology | 2018
Eunsoo Do; Seho Park; Ming-Hui Li; Jia-Mei Wang; Chen Ding; James W. Kronstad; Won Hee Jung
Iron-sulfur clusters (ISC) are indispensable cofactors for essential enzymes in various cellular processes. In the model yeast Saccharomyces cerevisiae, the precursor of ISCs is exported from mitochondria via a mitochondrial ABC transporter Atm1 and used for cytosolic and nuclear ISC protein assembly. Although iron homeostasis has been implicated in the virulence of the human fungal pathogen Cryptococcus neoformans, the key components of the ISC biosynthesis pathway need to be fully elucidated. In the current study, a homolog of S. cerevisiae Atm1 was identified in C. neoformans, and its function was characterized. We constructed C. neoformans mutants lacking ATM1 and found that deletion of ATM1 affected mitochondrial functions. Furthermore, we observed diminished activity of the cytosolic ISC-containing protein Leu1 and the heme-containing protein catalase in the atm1 mutant. These results suggested that Atm1 is required for the biosynthesis of ISCs in the cytoplasm as well as heme metabolism in C. neoformans. In addition, the atm1 mutants were avirulent in a murine model of cryptococcosis. Overall, our results demonstrated that Atm1 plays a critical role in iron metabolism and virulence for C. neoformans.
Molecular Microbiology | 2015
Guanggan Hu; Mélissa Caza; Brigitte Cadieux; Erik Bakkeren; Eunsoo Do; Won Hee Jung; James W. Kronstad
Iron availability is a key determinant of virulence in the pathogenic fungus Cryptococcus neoformans. Previous work revealed that the ESCRT (endosomal sorting complex required for transport) protein Vps23 functions in iron acquisition, capsule formation and virulence. Here, we further characterized the ESCRT machinery to demonstrate that defects in the ESCRT‐II and III complexes caused reduced capsule attachment, impaired growth on haem and resistance to non‐iron metalloprotoporphyrins. The ESCRT mutants shared several phenotypes with a mutant lacking the pH‐response regulator Rim101, and in other fungi, the ESCRT machinery is known to activate Rim101 via proteolytic cleavage. We therefore expressed a truncated and activated version of Rim101 in the ESCRT mutants and found that this allele restored capsule formation but not growth on haem, thus suggesting a Rim101‐independent contribution to haem uptake. We also demonstrated that the ESCRT machinery acts downstream of the cAMP/protein kinase A pathway to influence capsule elaboration. Defects in the ESCRT components also attenuated virulence in macrophage survival assays and a mouse model of cryptococcosis to a greater extent than reported for loss of Rim101. Overall, these results indicate that the ESCRT complexes function in capsule elaboration, haem uptake and virulence via Rim101‐dependent and independent mechanisms.