Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Albers is active.

Publication


Featured researches published by Eva Albers.


Iubmb Life | 2009

Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5′-methylthioadenosine

Eva Albers

The methionine salvage pathway, also called the 5′‐methylthioadenosine (MTA) cycle, recycles the sulfur of MTA, which is a by‐product in the biosyntheses of polyamine and the plant hormone ethylene. MTA is first converted to 5′‐methylthioribose‐1‐phosphate either by MTA phosphorylase or the combined action of MTA nucleosidase and 5′‐methylthioribose kinase. Subsequently, five additional enzymatic steps, catalyzed by four or five proteins, will form 4‐methylthio‐2‐oxobutyrate, the deaminated form of methionine. The final transamination is achieved by transaminases active in the amino acid biosynthesis. This pathway is present with some variations in all types of organisms and seems to be designed for a quick removal of MTA achieved by high affinities of the first enzymes. During evolution some enzymes have attained additional functions, like a proposed role in nuclear mRNA processing by the aci‐reductone dioxygenase. For others the function seems to be lost due to conditions in specific ecological niches, such as, presence of sulfur and/or absence of oxygen resulting in that, for example, Escherichia coli is lacking a functional pathway. The pathway is regulated as response to sulfur availability and take part in the regulation of polyamine synthesis. Some of the enzymes in the pathway show separate specificities in different organisms and some others are unique for groups of bacteria and parasites. Thus, promising targets for antimicrobial agents have been identified. Other medical topics to which this pathway has connections are cancer, apoptosis, and inflammatory response.


Biotechnology for Biofuels | 2012

Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass.

Rakesh Koppram; Eva Albers; Lisbeth Olsson

BackgroundOne of the crucial factors for a sustainable and economical production of lignocellulosic based bioethanol is the availability of a robust fermenting microorganism with high tolerance to inhibitors generated during the pretreatment of lignocellulosic raw materials, since these inhibitors are known to severely hinder growth and fermentation.ResultsA long-term adaptation in repetitive batch cultures in shake flasks using a cocktail of 12 different inhibitors and a long-term chemostat adaptation using spruce hydrolysate were used as evolutionary engineering strategies to improve the inhibitor tolerance in the metabolically engineered xylose utilizing Saccharomyces cerevisiae strain, TMB3400. The yeast was evolved for a period of 429 and 97 generations in repetitive batch cultures and chemostat cultivation, respectively. During the evolutionary engineering in repetitive batch cultures the maximum specific growth rate increased from 0.18 h-1 to 0.33 h-1 and the time of lag phase was decreased from 48 h to 24 h. In the chemostat adaptation, after 97 generations, the specific conversion rates of HMF and furfural were found to be 3.5 and 4 folds higher respectively, compared to rates after three generations. Two evolved strains (RK60-5, RKU90-3) and one evolved strain (KE1-17) were isolated from evolutionary engineering in repetitive batches and chemostat cultivation, respectively. The strains displayed significantly improved growth performance over TMB3400 when cultivated in spruce hydrolysate under anaerobic conditions, the evolved strains exhibited 25 to 38% increase in specific consumption rate of sugars and 32 to 50% increased specific ethanol productivity compared to TMB3400. The evolved strains RK60-5 and RKU90-3 were unable to consume xylose under anaerobic conditions, whereas, KE1-17 was found to consume xylose at similar rates as TMB3400.ConclusionUsing evolutionary engineering strategies in batch and chemostat cultivations we have generated three evolved strains that show significantly better tolerance to inhibitors in spruce hydrolysate and displayed a shorter time for overall fermentation of sugars compared to the parental strain.


Applied and Environmental Microbiology | 2004

Role of Hexose Transport in Control of Glycolytic Flux in Saccharomyces cerevisiae

Karin Elbing; Christer Larsson; Roslyn M. Bill; Eva Albers; Jacky L. Snoep; Eckhard Boles; Stefan Hohmann; Lena Gustafsson

ABSTRACT The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeasts glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.


Journal of Cell Biology | 2006

Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p

Boqian Wu; Kim Ottow; Peter Poulsen; Richard F. Gaber; Eva Albers; Morten C. Kielland-Brandt

Recent studies of Saccharomyces cerevisiae revealed sensors that detect extracellular amino acids (Ssy1p) or glucose (Snf3p and Rgt2p) and are evolutionarily related to the transporters of these nutrients. An intriguing question is whether the evolutionary transformation of transporters into nontransporting sensors reflects a homeostatic capability of transporter-like sensors that could not be easily attained by other types of sensors. We previously found SSY1 mutants with an increased basal level of signaling and increased apparent affinity to sensed extracellular amino acids. On this basis, we propose and test a general model for transporter- like sensors in which occupation of a single, central ligand binding site increases the activation energy needed for the conformational shift between an outward-facing, signaling conformation and an inward-facing, nonsignaling conformation. As predicted, intracellular leucine accumulation competitively inhibits sensing of extracellular amino acids. Thus, a single sensor allows the cell to respond to changes in nutrient availability through detection of the relative concentrations of intra- and extracellular ligand.


Biotechnology for Biofuels | 2013

Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales.

Rakesh Koppram; Fredrik Nielsen; Eva Albers; Annika Lambert; Sune Wännström; Lars Welin; Guido Zacchi; Lisbeth Olsson

BackgroundWhile simultaneous saccharification and co-fermentation (SSCF) is considered to be a promising process for bioconversion of lignocellulosic materials to ethanol, there are still relatively little demo-plant data and operating experiences reported in the literature. In the current work, we designed a SSCF process and scaled up from lab to demo scale reaching 4% (w/v) ethanol using xylose rich corncobs.ResultsSeven different recombinant xylose utilizing Saccharomyces cerevisiae strains were evaluated for their fermentation performance in hydrolysates of steam pretreated corncobs. Two strains, RHD-15 and KE6-12 with highest ethanol yield and lowest xylitol yield, respectively were further screened in SSCF using the whole slurry from pretreatment. Similar ethanol yields were reached with both strains, however, KE6-12 was chosen as the preferred strain since it produced 26% lower xylitol from consumed xylose compared to RHD-15. Model SSCF experiments with glucose or hydrolysate feed in combination with prefermentation resulted in 79% of xylose consumption and more than 75% of the theoretical ethanol yield on available glucose and xylose in lab and PDU scales. The results suggest that for an efficient xylose conversion to ethanol controlled release of glucose from enzymatic hydrolysis and low levels of glucose concentration must be maintained throughout the SSCF. Fed-batch SSCF in PDU with addition of enzymes at three different time points facilitated controlled release of glucose and hence co-consumption of glucose and xylose was observed yielding 76% of the theoretical ethanol yield on available glucose and xylose at 7.9% water insoluble solids (WIS). With a fed-batch SSCF in combination with prefermentation and a feed of substrate and enzymes 47 and 40 g l-1 of ethanol corresponding to 68% and 58% of the theoretical ethanol yield on available glucose and xylose were produced at 10.5% WIS in PDU and demo scale, respectively. The strain KE6-12 was able to completely consume xylose within 76 h during the fermentation of hydrolysate in a 10 m3 demo scale bioreactor.ConclusionsThe potential of SSCF is improved in combination with prefermentation and a feed of substrate and enzymes. It was possible to successfully reproduce the fed-batch SSCF at demo scale producing 4% (w/v) ethanol which is the minimum economical requirement for efficient lignocellulosic bioethanol production process.


FEBS Journal | 2008

A complete inventory of all enzymes in the eukaryotic methionine salvage pathway

Ivan Pirkov; Joakim Norbeck; Lena Gustafsson; Eva Albers

The methionine salvage pathway is universally used to regenerate methionine from 5′‐methylthioadenosine, a byproduct of certain reactions involving S‐adenosylmethionine. We identified and verified the genes encoding the enzymes of all steps in this cycle in a commonly used eukaryotic model system: the yeast Saccharomyces cerevisiae. The genes encoding 5′‐methylthioribose‐1‐phosphate isomerase and 5′‐methylthioribulose‐1‐phosphate dehydratase are herein named MRI1 and MDE1, respectively. The 5′‐methylthioadenosine phosphorylase was verified as Meu1p, the 2,3‐dioxomethiopentane‐1‐phosphate enolase/phosphatase as Utr4p and the aci‐reductone dioxygenase as Adi1p. The homologue of the enolase/phosphatase gene, YNL010w, was excluded from its candidate role in the cycle. The methodology used involved auxotrophic growth tests and analysis of intracellular 5′‐methylthioadenosine in deletion mutants. The last step, a transamination of 4‐methylthio‐2‐oxobutyrate to yield methionine, was found to be a highly redundant step. It was catalysed by amino acid transaminases, mainly coupled with aromatic and branched chain amino acids as amino donors, but also with proline, lysine and glutamate/glutamine. The aromatic amino acid transaminases, Aro8p and Aro9p, and the branched chain amino acid transaminases, Bat1p and Bat2p, seemed to be the main enzymes exhibiting 4‐methylthio‐2‐oxobutyrate transaminase activity. Bat2p was found to be less specific and used proline, lysine, tyrosine and glutamate as amino donors in addition to the branched chain amino acids. Thus, for the first time, all enzymes of the methionine salvage pathway were identified in a eukaryote.


Journal of Industrial Microbiology & Biotechnology | 2009

A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains

Eva Albers; Christer Larsson

In general, it is believed that fermentation by yeast under harsh industrial conditions, especially if substrates such as wood hydrolysate or lignocellulosic substrates are used, requires the use of so-called industrial strains. In order to check whether this is always true, a comparison of performance was made using two industrial strains and four commonly used laboratory strains, the haploid and diploid versions of CEN-PK and X2180, under industrially relevant stress conditions. The industrial strains were a Swedish commercial baker’s yeast strain and a strain previously isolated from an industrial bioethanol production plant using lignocellulosic substrate. Stress conditions included, apart from growth in the lignocellulosic substrate itself, elevated concentrations of glucose, NaCl, ethanol, and lactate as well as low pH. Results showed that, indeed, the strain adapted to lignocellulosic substrate also possessed the highest growth rate as well as shortest duration of the lag phase in this type of medium. However, the higher the additional stress level, the lower the difference compared to other strains, and X2180 in particular displayed a high resistance to these additional stress conditions. Furthermore, no difference in performance could be detected between the haploid or diploid versions of the laboratory strains. It might be that, at least under some circumstances, a laboratory strain such as X2180 could be an industrially attractive production organism with the advantage of facilitating the possibilities for making controlled genetic manipulations.


Applied and Environmental Microbiology | 2003

Carbon starvation can induce energy deprivation and loss of fermentative capacity in Saccharomyces cerevisiae.

Elisabeth Thomsson; Christer Larsson; Eva Albers; Annika Nilsson; Carl Johan Franzén; Lena Gustafsson

ABSTRACT Seven different strains of Saccharomyces cerevisiae were tested for the ability to maintain their fermentative capacity during 24 h of carbon or nitrogen starvation. Starvation was imposed by transferring cells, exponentially growing in anaerobic batch cultures, to a defined growth medium lacking either a carbon or a nitrogen source. After 24 h of starvation, fermentative capacity was determined by addition of glucose and measurement of the resulting ethanol production rate. The results showed that 24 h of nitrogen starvation reduced the fermentative capacity by 70 to 95%, depending on the strain. Carbon starvation, on the other hand, provoked an almost complete loss of fermentative capacity in all of the strains tested. The absence of ethanol production following carbon starvation occurred even though the cells possessed a substantial glucose transport capacity. In fact, similar uptake capacities were recorded irrespective of whether the cells had been subjected to carbon or nitrogen starvation. Instead, the loss of fermentative capacity observed in carbon-starved cells was almost surely a result of energy deprivation. Carbon starvation drastically reduced the ATP content of the cells to values well below 0.1 μmol/g, while nitrogen-starved cells still contained approximately 6 μmol/g after 24 h of treatment. Addition of a small amount of glucose (0.1 g/liter at a cell density of 1.0 g/liter) at the initiation of starvation or use of stationary-phase instead of log-phase cells enabled the cells to preserve their fermentative capacity also during carbon starvation. The prerequisites for successful adaptation to starvation conditions are probably gradual nutrient depletion and access to energy during the adaptation period.


Applied and Environmental Microbiology | 2007

Effect of Nutrient Starvation on the Cellular Composition and Metabolic Capacity of Saccharomyces cerevisiae

Eva Albers; Christer Larsson; Thomas Andlid; Michael C. Walsh; Lena Gustafsson

ABSTRACT This investigation addresses the following question: what are the important factors for maintenance of a high catabolic capacity under various starvation conditions? Saccharomyces cerevisiae was cultured in aerobic batch cultures, and during the diauxic shift cells were transferred and subjected to 24 h of starvation. The following conditions were used: carbon starvation, nitrogen starvation in the presence of glucose or ethanol, and both carbon starvation and nitrogen starvation. During the starvation period changes in biomass composition (including protein, carbohydrate, lipid, and nucleic acid contents), metabolic activity, sugar transport kinetics, and the levels of selected enzymes were recorded. Subsequent to the starvation period the remaining catabolic capacity was measured by addition of 50 mM glucose. The results showed that the glucose transport capacity is a key factor for maintenance of high metabolic capacity in many, but not all, cases. The results for cells starved of carbon, carbon and nitrogen, or nitrogen in the presence of glucose all indicated that the metabolic capacity was indeed controlled by the glucose transport ability, perhaps with some influence of hexokinase, phosphofructokinase, aldolase, and enolase levels. However, it was also demonstrated that there was no such correlation when nitrogen starvation occurred in the presence of ethanol instead of glucose.


Microbiology | 1998

Distribution of 14C-labelled carbon from glucose and glutamate during anaerobic growth of Saccharomyces cerevisiae

Eva Albers; Lena Gustafsson; Claes Niklasson; Gunnar Lidén

The distribution of carbon from glucose and glutamate was studied using anaerobically grown Saccharomyces cerevisiae. The yeast was grown on glucose (20 g l-1) as the carbon/energy source and glutamic acid (3.5 g l-1) as additional carbon and sole nitrogen source. The products formed were identified using labelled [U-14C]glucose or [U-14C]glutamic acid. A seldom-reported metabolite in S. cerevisiae, 2-hydroxyglutarate, was found in significant amounts. It is suggested that 2-hydroxyglutarate is formed from the reduction of 2-oxoglutarate in a reaction catalysed by a dehydrogenase. Succinate, 2-oxoglutarate and 2-hydroxyglutarate were found to be derived exclusively from glutamate. Based on radioactivity measurements, 55%, 17% and 14% of the labelled glutamate was converted to 2-oxoglutarate, succinate and 2-hydroxyglutarate, respectively, and 55%, 9% and 3% of the labelled glucose was converted to ethanol, glycerol and pyruvate, respectively. No labelled glucose was converted to 2-oxoglutarate, succinate or 2-hydroxyglutarate. Furthermore, very little of the evolved CO2 was derived from glutamate. Separation of the amino acids from biomass by paper chromatography revealed that the glutamate family of amino acids (glutamic acid, glutamine, proline, arginine and lysine) originated almost exclusively from the carbon skeleton of glutamic acid. It can be concluded that the carbon flow follows two separate paths, and that the only major reactions utilized in the tricarboxylic acid (TCA) cycle are those reactions involved in the conversion of 2-oxoglutarate to succinate.

Collaboration


Dive into the Eva Albers's collaboration.

Top Co-Authors

Avatar

Lisbeth Olsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rakesh Koppram

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ingrid Undeland

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christer Larsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lena Gustafsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua Mayers

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Carl Johan Franzén

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Joakim Olsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Susanne Ekendahl

Research Institutes of Sweden

View shared research outputs
Researchain Logo
Decentralizing Knowledge