Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Albrecht is active.

Publication


Featured researches published by Eva Albrecht.


PLOS Genetics | 2009

Meta-Analysis of 28,141 Individuals Identifies Common Variants within Five New Loci That Influence Uric Acid Concentrations

Melanie Kolz; Toby Johnson; Serena Sanna; Alexander Teumer; Veronique Vitart; Markus Perola; Massimo Mangino; Eva Albrecht; Chris Wallace; Martin Farrall; Åsa Johansson; Dale R. Nyholt; Yurii S. Aulchenko; Jacques S. Beckmann; Sven Bergmann; Murielle Bochud; Morris J. Brown; Harry Campbell; John M. C. Connell; Anna F. Dominiczak; Georg Homuth; Claudia Lamina; Mark I. McCarthy; Thomas Meitinger; Vincent Mooser; Patricia B. Munroe; Matthias Nauck; John F. Peden; Holger Prokisch; Perttu Salo

Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. To investigate the polygenetic basis of serum uric acid levels, we conducted a meta-analysis of genome-wide association scans from 14 studies totalling 28,141 participants of European descent, resulting in identification of 954 SNPs distributed across nine loci that exceeded the threshold of genome-wide significance, five of which are novel. Overall, the common variants associated with serum uric acid levels fall in the following nine regions: SLC2A9 (p = 5.2×10−201), ABCG2 (p = 3.1×10−26), SLC17A1 (p = 3.0×10−14), SLC22A11 (p = 6.7×10−14), SLC22A12 (p = 2.0×10−9), SLC16A9 (p = 1.1×10−8), GCKR (p = 1.4×10−9), LRRC16A (p = 8.5×10−9), and near PDZK1 (p = 2.7×10−9). Identified variants were analyzed for gender differences. We found that the minor allele for rs734553 in SLC2A9 has greater influence in lowering uric acid levels in women and the minor allele of rs2231142 in ABCG2 elevates uric acid levels more strongly in men compared to women. To further characterize the identified variants, we analyzed their association with a panel of metabolites. rs12356193 within SLC16A9 was associated with DL-carnitine (p = 4.0×10−26) and propionyl-L-carnitine (p = 5.0×10−8) concentrations, which in turn were associated with serum UA levels (p = 1.4×10−57 and p = 8.1×10−54, respectively), forming a triangle between SNP, metabolites, and UA levels. Taken together, these associations highlight additional pathways that are important in the regulation of serum uric acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia. In addition, these findings strongly support the hypothesis that transport proteins are key in regulating serum uric acid levels.


PLOS ONE | 2011

A Comprehensive Evaluation of Potential Lung Function Associated Genes in the SpiroMeta General Population Sample

Ma’en Obeidat; Louise V. Wain; Nick Shrine; Noor Kalsheker; María Soler Artigas; Emmanouela Repapi; Paul R. Burton; Toby Johnson; Adaikalavan Ramasamy; Jing Hua Zhao; Guangju Zhai; Jennifer E. Huffman; Veronique Vitart; Eva Albrecht; Wilmar Igl; Anna-Liisa Hartikainen; Anneli Pouta; Gemma Cadby; Jennie Hui; Lyle J. Palmer; David Hadley; Wendy L. McArdle; Alicja R. Rudnicka; Inês Barroso; Ruth J. F. Loos; Nicholas J. Wareham; Massimo Mangino; Nicole Soranzo; Tim D. Spector; Sven Gläser

Rationale Lung function measures are heritable traits that predict population morbidity and mortality and are essential for the diagnosis of chronic obstructive pulmonary disease (COPD). Variations in many genes have been reported to affect these traits, but attempts at replication have provided conflicting results. Recently, we undertook a meta-analysis of Genome Wide Association Study (GWAS) results for lung function measures in 20,288 individuals from the general population (the SpiroMeta consortium). Objectives To comprehensively analyse previously reported genetic associations with lung function measures, and to investigate whether single nucleotide polymorphisms (SNPs) in these genomic regions are associated with lung function in a large population sample. Methods We analysed association for SNPs tagging 130 genes and 48 intergenic regions (+/−10 kb), after conducting a systematic review of the literature in the PubMed database for genetic association studies reporting lung function associations. Results The analysis included 16,936 genotyped and imputed SNPs. No loci showed overall significant association for FEV1 or FEV1/FVC traits using a carefully defined significance threshold of 1.3×10−5. The most significant loci associated with FEV1 include SNPs tagging MACROD2 (P = 6.81×10−5), CNTN5 (P = 4.37×10−4), and TRPV4 (P = 1.58×10−3). Among ever-smokers, SERPINA1 showed the most significant association with FEV1 (P = 8.41×10−5), followed by PDE4D (P = 1.22×10−4). The strongest association with FEV1/FVC ratio was observed with ABCC1 (P = 4.38×10−4), and ESR1 (P = 5.42×10−4) among ever-smokers. Conclusions Polymorphisms spanning previously associated lung function genes did not show strong evidence for association with lung function measures in the SpiroMeta consortium population. Common SERPINA1 polymorphisms may affect FEV1 among smokers in the general population.


Nature Genetics | 2012

Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations

Yukinori Okada; Xueling Sim; Min Jin Go; Jer-Yuarn Wu; Dongfeng Gu; Fumihiko Takeuchi; Atsushi Takahashi; Shiro Maeda; Tatsuhiko Tsunoda; Peng Chen; Su-Chi Lim; Tien Yin Wong; Jianjun Liu; Terri L. Young; Tin Aung; Mark Seielstad; Yik-Ying Teo; Young-Jin Kim; Jong-Young Lee; Bok-Ghee Han; Daehee Kang; Chien-Hsiun Chen; Fuu Jen Tsai; Li-Ching Chang; S-J Cathy Fann; Hao Mei; Dabeeru C. Rao; James E. Hixson; Shufeng Chen; Tomohiro Katsuya

Chronic kidney disease (CKD), impairment of kidney function, is a serious public health problem, and the assessment of genetic factors influencing kidney function has substantial clinical relevance. Here, we report a meta-analysis of genome-wide association studies for kidney function–related traits, including 71,149 east Asian individuals from 18 studies in 11 population-, hospital- or family-based cohorts, conducted as part of the Asian Genetic Epidemiology Network (AGEN). Our meta-analysis identified 17 loci newly associated with kidney function–related traits, including the concentrations of blood urea nitrogen, uric acid and serum creatinine and estimated glomerular filtration rate based on serum creatinine levels (eGFRcrea) (P < 5.0 × 10−8). We further examined these loci with in silico replication in individuals of European ancestry from the KidneyGen, CKDGen and GUGC consortia, including a combined total of ∼110,347 individuals. We identify pleiotropic associations among these loci with kidney function–related traits and risk of CKD. These findings provide new insights into the genetics of kidney function.


American Journal of Respiratory and Critical Care Medicine | 2011

Effect of five genetic variants associated with lung function on the risk of chronic obstructive lung disease, and their joint effects on lung function

M. Soler Artigas; Louise V. Wain; Emmanouela Repapi; Ma'en Obeidat; Ian Sayers; Paul R. Burton; Toby Johnson; Jiao Zhao; Eva Albrecht; Anna F. Dominiczak; Sm Kerr; Blair H. Smith; Gemma Cadby; Jennie Hui; Lyle J. Palmer; Aroon D. Hingorani; Sg Wannamethee; P H Whincup; S Ebrahim; George Davey Smith; Inês Barroso; Remco Loos; Nicholas J. Wareham; C Cooper; E Dennison; Seif O. Shaheen; Jimmy Z. Liu; Jonathan Marchini; Santosh Dahgam; Åsa Torinsson Naluai

RATIONALE Genomic loci are associated with FEV1 or the ratio of FEV1 to FVC in population samples, but their association with chronic obstructive pulmonary disease (COPD) has not yet been proven, nor have their combined effects on lung function and COPD been studied. OBJECTIVES To test association with COPD of variants at five loci (TNS1, GSTCD, HTR4, AGER, and THSD4) and to evaluate joint effects on lung function and COPD of these single-nucleotide polymorphisms (SNPs), and variants at the previously reported locus near HHIP. METHODS By sampling from 12 population-based studies (n = 31,422), we obtained genotype data on 3,284 COPD case subjects and 17,538 control subjects for sentinel SNPs in TNS1, GSTCD, HTR4, AGER, and THSD4. In 24,648 individuals (including 2,890 COPD case subjects and 13,862 control subjects), we additionally obtained genotypes for rs12504628 near HHIP. Each allele associated with lung function decline at these six SNPs contributed to a risk score. We studied the association of the risk score to lung function and COPD. MEASUREMENTS AND MAIN RESULTS Association with COPD was significant for three loci (TNS1, GSTCD, and HTR4) and the previously reported HHIP locus, and suggestive and directionally consistent for AGER and TSHD4. Compared with the baseline group (7 risk alleles), carrying 10-12 risk alleles was associated with a reduction in FEV1 (β = -72.21 ml, P = 3.90 × 10(-4)) and FEV1/FVC (β = -1.53%, P = 6.35 × 10(-6)), and with COPD (odds ratio = 1.63, P = 1.46 × 10(-5)). CONCLUSIONS Variants in TNS1, GSTCD, and HTR4 are associated with COPD. Our highest risk score category was associated with a 1.6-fold higher COPD risk than the population average score.


PLOS Pathogens | 2014

JC Polyomavirus Infection Is Strongly Controlled by Human Leucocyte Antigen Class II Variants

Emilie Sundqvist; Dorothea Buck; Clemens Warnke; Eva Albrecht; Christian Gieger; Mohsen Khademi; Izaura Lima Bomfim; Anna Fogdell-Hahn; Jenny Link; Lars Alfredsson; Helle Bach Søndergaard; Jan Hillert; Lisa F. Barcellos; David R. Booth; Jacob L. McCauley; Manuel Comabella; Alastair Compston; Sandra D'Alfonso; Philip L. De Jager; Bertrand Fontaine; An Goris; David A. Hafler; Jonathan L. Haines; Hanne F. Harbo; Stephen L. Hauser; Clive Hawkins; Bernhard Hemmer; Adrian J. Ivinson; Ingrid Kockum; Roland Martin

JC polyomavirus (JCV) carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML) which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50–60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA), instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP) kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO) method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10−15) and controls (OR = 0.53, p = 2×10−5). In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR = 1.63, p = 0.006), and controls (OR = 2.69, p = 1×10−5). The German dataset confirmed these findings (OR = 0.54, p = 1×10−4 and OR = 1.58, p = 0.03 respectively for these haplotypes). HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and lays the ground for risk stratification for PML and development of therapy and prevention.


PLOS ONE | 2013

Posttraumatic stress disorder and not depression is associated with shorter leukocyte telomere length: findings from 3,000 participants in the population-based KORA F4 study.

Karl-Heinz Ladwig; Anne Catharina Brockhaus; Jens Baumert; Karoline Lukaschek; Rebecca T. Emeny; Johannes Kruse; Veryan Codd; Sibylle Häfner; Eva Albrecht; Thomas Illig; Nilesh J. Samani; H.-Erich Wichmann; Christian Gieger; Annette Peters

Background A link between severe mental stress and shorter telomere length (TL) has been suggested. We analysed the impact of Posttraumatic Stress Disorder (PTSD) on TL in the general population and postulated a dose-dependent TL association in subjects suffering from partial PTSD compared to full PTSD. Methods Data are derived from the population-based KORA F4 study (2006–2008), located in southern Germany including 3,000 individuals (1,449 men and 1,551 women) with valid and complete TL data. Leukocyte TL was measured using a quantitative PCR-based technique. PTSD was assessed in a structured interview and by applying the Posttraumatic Diagnostic Scale (PDS) and the Impact of Event Scale (IES). A total of 262 (8.7%) subjects qualified for having partial PTSD and 51 (1.7%) for full PTSD. To assess the association of PTSD with the average TL, linear regression analyses with adjustments for potential confounding factors were performed. Results The multiple model revealed a significant association between partial PTSD and TL (beta = −0.051, p = 0.009) as well as between full PTSD and shorter TL (beta = −0.103, p = 0.014) indicating shorter TL on average for partial and full PTSD. An additional adjustment for depression and depressed mood/exhaustion gave comparable beta estimations. Conclusions Participants with partial and full PTSD had significantly shorter leukocyte TL than participants without PTSD. The dose-dependent variation in TL of subjects with partial and full PTSD exceeded the chronological age effect, and was equivalent to an estimated 5 years in partial and 10 years in full PTSD of premature aging.


Nature Communications | 2015

Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation.

María Soler Artigas; Louise V. Wain; Suzanne Miller; Abdul Kader Kheirallah; Jennifer E. Huffman; Ioanna Ntalla; Nick Shrine; Ma’en Obeidat; Holly Trochet; Wendy L. McArdle; Alexessander Couto Alves; Jennie Hui; Jing Hua Zhao; Peter K. Joshi; Alexander Teumer; Eva Albrecht; Medea Imboden; Rajesh Rawal; Lorna M. Lopez; Jonathan Marten; Stefan Enroth; Ida Surakka; Ozren Polasek; Leo-Pekka Lyytikäinen; Raquel Granell; Pirro G. Hysi; Claudia Flexeder; Anubha Mahajan; John Beilby; Yohan Bossé

Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (P<5 × 10−8) in or near ENSA, RNU5F-1, KCNS3, AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered.


PLOS ONE | 2014

Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function

Wenbo Tang; Matthew Kowgier; Daan W. Loth; María Soler Artigas; Bonnie R. Joubert; Emily Hodge; Sina A. Gharib; Albert V. Smith; Ingo Ruczinski; Vilmundur Gudnason; Rasika A. Mathias; Tamara B. Harris; Nadia N. Hansel; Lenore J. Launer; Kathleen C. Barnes; J Hansen; Eva Albrecht; Melinda C. Aldrich; Michael Allerhand; R. Graham Barr; Guy Brusselle; David J. Couper; Ivan Curjuric; Gail Davies; Ian J. Deary; Josée Dupuis; Tove Fall; Millennia Foy; Nora Franceschini; Wei Gao

Background Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. Methods We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. Results The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10-7). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10-8) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. Conclusions In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.


American Journal of Epidemiology | 2013

Association of Adiposity Genetic Variants With Menarche Timing in 92,105 Women of European Descent

Lindsay Fernández-Rhodes; Ellen W. Demerath; Diana L. Cousminer; Ran Tao; Jill Dreyfus; Tonu Esko; Albert V. Smith; Vilmundur Gudnason; Tamara B. Harris; Lenore Launer; Patrick F. McArdle; Laura M. Yerges-Armstrong; Cathy E. Elks; David P. Strachan; Zoltán Kutalik; Peter Vollenweider; Bjarke Feenstra; Heather A. Boyd; Andres Metspalu; Evelin Mihailov; Linda Broer; M. Carola Zillikens; Ben A. Oostra; Cornelia M. van Duijn; Kathryn L. Lunetta; John R B Perry; Anna Murray; Daniel L. Koller; Dongbing Lai; Tanguy Corre

Obesity is of global health concern. There are well-described inverse relationships between female pubertal timing and obesity. Recent genome-wide association studies of age at menarche identified several obesity-related variants. Using data from the ReproGen Consortium, we employed meta-analytical techniques to estimate the associations of 95 a priori and recently identified obesity-related (body mass index (weight (kg)/height (m)(2)), waist circumference, and waist:hip ratio) single-nucleotide polymorphisms (SNPs) with age at menarche in 92,116 women of European descent from 38 studies (1970-2010), in order to estimate associations between genetic variants associated with central or overall adiposity and pubertal timing in girls. Investigators in each study performed a separate analysis of associations between the selected SNPs and age at menarche (ages 9-17 years) using linear regression models and adjusting for birth year, site (as appropriate), and population stratification. Heterogeneity of effect-measure estimates was investigated using meta-regression. Six novel associations of body mass index loci with age at menarche were identified, and 11 adiposity loci previously reported to be associated with age at menarche were confirmed, but none of the central adiposity variants individually showed significant associations. These findings suggest complex genetic relationships between menarche and overall obesity, and to a lesser extent central obesity, in normal processes of growth and development.


Metabolomics | 2014

Metabolite profiling reveals new insights into the regulation of serum urate in humans

Eva Albrecht; Melanie Waldenberger; Jan Krumsiek; Anne M. Evans; Ulli Jeratsch; Michaela Breier; Jerzy Adamski; Wolfgang Koenig; Sonja Zeilinger; Christiane Fuchs; Norman Klopp; Fabian J. Theis; H.-Erich Wichmann; Karsten Suhre; Thomas Illig; Konstantin Strauch; Annette Peters; Christian Gieger; Gabi Kastenmüller; Angela Doering; Christa Meisinger

Serum urate, the final breakdown product of purine metabolism, is causally involved in the pathogenesis of gout, and implicated in cardiovascular disease and type 2 diabetes. Serum urate levels highly differ between men and women; however the underlying biological processes in its regulation are still not completely understood and are assumed to result from a complex interplay between genetic, environmental and lifestyle factors. In order to describe the metabolic vicinity of serum urate, we analyzed 355 metabolites in 1,764 individuals of the population-based KORA F4 study and constructed a metabolite network around serum urate using Gaussian Graphical Modeling in a hypothesis-free approach. We subsequently investigated the effect of sex and urate lowering medication on all 38 metabolites assigned to the network. Within the resulting network three main clusters could be detected around urate, including the well-known pathway of purine metabolism, as well as several dipeptides, a group of essential amino acids, and a group of steroids. Of the 38 assigned metabolites, 25 showed strong differences between sexes. Association with uricostatic medication intake was not only confined to purine metabolism but seen for seven metabolites within the network. Our findings highlight pathways that are important in the regulation of serum urate and suggest that dipeptides, amino acids, and steroid hormones are playing a role in its regulation. The findings might have an impact on the development of specific targets in the treatment and prevention of hyperuricemia.

Collaboration


Dive into the Eva Albrecht's collaboration.

Top Co-Authors

Avatar

Christian Gieger

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inês Barroso

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Veryan Codd

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Ida Surakka

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Ma'en Obeidat

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jennie Hui

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge