Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Barreno is active.

Publication


Featured researches published by Eva Barreno.


Plant Physiology and Biochemistry | 2003

Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation

Angeles Calatayud; Domingo J. Iglesias; Manuel Talon; Eva Barreno

The photosynthesis response, antioxidant systems and lipid peroxidation were studied in leaves from spinach plants ( Spinacia oleraceaL.) in response to ozone fumigation, ambient air and charcoal filtered air treatments. The photosynthetic activity was tested through gas exchange and chlorophyll a fluorescence measurements. Ambient air and ozone fumigation caused a decrease in the photosynthetic rate (25% and 63%, respectively) mainly due to a reduced mesophyll activity, as evidenced by the increased intercellular CO 2 concentration. These data agree with a large reduction in the non-cyclic electron flow (7% and 16%), a lower capacity to reduce the quinone pool and a higher development of non-photochemical quenching upon high O3 concentration. The results suggest that the oxidative stress produced, together with the stimulation of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11) activities and the increase in lipid peroxidation (20% and 36%, respectively), generated an alteration of the membrane properties.


Environmental Microbiology | 2011

Two Trebouxia algae with different physiological performances are ever‐present in lichen thalli of Ramalina farinacea. Coexistence versus Competition?

Leonardo M. Casano; Eva M. del Campo; Francisco J. García-Breijo; José Reig-Armiñana; Francisco Gasulla; Alicia del Hoyo; Alfredo Guéra; Eva Barreno

Ramalina farinacea is an epiphytic fruticose lichen that is relatively abundant in areas with Mediterranean, subtropical or temperate climates. Little is known about photobiont diversity in different lichen populations. The present study examines the phycobiont composition of several geographically distant populations of R. farinacea from the Iberian Peninsula, Canary Islands and California as well as the physiological performance of isolated phycobionts. Based on anatomical observations and molecular analyses, the coexistence of two different taxa of Trebouxia (working names, TR1 and TR9) was determined within each thallus of R. farinacea in all of the analysed populations. Examination of the effects of temperature and light on growth and photosynthesis indicated a superior performance of TR9 under relatively high temperatures and irradiances while TR1 thrived at moderate temperature and irradiance. Ramalina farinacea thalli apparently represent a specific and selective form of symbiotic association involving the same two Trebouxia phycobionts. Strict preservation of this pattern of algal coexistence is likely favoured by the different and probably complementary ecophysiological responses of each phycobiont, thus facilitating the proliferation of this lichen in a wide range of habitats and geographic areas.


Planta | 1998

Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts

Vicente I. Deltoro; Angeles Calatayud; Cristina Gimeno; Anunciación Abadía; Eva Barreno

Abstract. The interactions among water content, chlorophyll a fluorescence emission, xanthophyll interconversions and net photosynthesis were analyzed during dehydration in desiccation-tolerant Frullania dilatata (L.) Dum. and desiccation-intolerant Pellia endiviifolia (Dicks) Dum. Water loss led to a progressive suppression of photosynthetic carbon assimilation in both species. Their chlorophyll fluorescence characteristics at low water content were: low photosynthetic quantum conversion efficiency, high excitation pressure on photosystem II and strong non-photochemical quenching. However, dissipation activity was lower in P. endiviifolia and was not accompanied by a rise in the concentration of de-epoxidised xanthophylls as F. dilatata. The photosynthetic apparatus of F. dilatata remained fully and speedily recuperable after desiccation in as indicated by the restoration of chlorophyll fluorescence parameters to pre-desiccation values upon rehydration. A lack of recovery upon remoistening of P. endiviifolia indicated permanent and irreversible damage to photosystem II. The results suggest that F. dilatata possesses a desiccation-induced zeaxanthin-mediated photoprotective mechanism which might aid photosynthesis recovery when favourable conditions are restored by alleviating photoinhibitory damage during desiccation. This avoidance mechanism might have evolved as an adaptative response to repeated cycles of desiccation and rehydration that represent a real threat to photosynthetic viability.


Photosynthetica | 2004

Response of Spinach Leaves (Spinacia oleracea L.) to Ozone Measured by Gas Exchange, Chlorophyll a Fluorescence, Antioxidant Systems, and Lipid Peroxidation

Angeles Calatayud; Domingo J. Iglesias; Manuel Talon; Eva Barreno

Spinach (Spinacia oleracea L. cv. Clermont) leaves grown in open-top chambers and exposed to three different concentrations of ozone were measured for gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation at the end of growing season. High O3 concentration reduced Fv/Fm, indicating that the efficiency in the energy conversion of photosystem 2 (PS2) was altered. The rate of non-cyclic electron transport rate and the capacity to reduce the quinone pool were also affected. The development of non-photochemical quenching was not high enough to decrease the photon excess in the PS2. The limitation of photosynthetic activity was probably correlated with stomata closure and with an increase in intercellular CO2 concentration. Under oxidative stress, superoxide dismutase (SOD) activity was stimulated in parallel with lipid peroxidation. We did not find any differences in the ascorbate (AsA) pool and ascorbate peroxidase (APX) or glutathione reductase (GR) activities between air qualities. Small, but similar responses were observed in spinach leaves exposed to ambient ozone concentration.


Annals of Botany | 2012

The impact of dehydration rate on the production and cellular location of reactive oxygen species in an aquatic moss

Ricardo Cruz de Carvalho; Myriam Catalá; Jorge Marques da Silva; Cristina Branquinho; Eva Barreno

BACKGROUND AND AIMS The aquatic moss Fontinalis antipyretica requires a slow rate of dehydration to survive a desiccation event. The present work examined whether differences in the dehydration rate resulted in corresponding differences in the production of reactive oxygen species (ROS) and therefore in the amount of cell damage. METHODS Intracellular ROS production by the aquatic moss was assessed with confocal laser microscopy and the ROS-specific chemical probe 2,7-dichlorodihydrofluorescein diacetate. The production of hydrogen peroxide was also quantified and its cellular location was assessed. KEY RESULTS The rehydration of slowly dried cells was associated with lower ROS production, thereby reducing the amount of cellular damage and increasing cell survival. A high oxygen consumption burst accompanied the initial stages of rehydration, perhaps due to the burst of ROS production. CONCLUSIONS A slow dehydration rate may induce cell protection mechanisms that serve to limit ROS production and reduce the oxidative burst, decreasing the number of damaged and dead cells due upon rehydration.


BMC Microbiology | 2010

Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis

Myriam Catalá; Francisco Gasulla; Ana E Pradas del Real; Francisco J. García-Breijo; José Reig-Armiñana; Eva Barreno

BackgroundReactive oxygen species (ROS) are normally produced in respiratory and photosynthetic electron chains and their production is enhanced during desiccation/rehydration. Nitric oxide (NO) is a ubiquitous and multifaceted molecule involved in cell signaling and abiotic stress. Lichens are poikilohydrous organisms that can survive continuous cycles of desiccation and rehydration. Although the production of ROS and NO was recently demonstrated during lichen rehydration, the functions of these compounds are unknown. The aim of this study was to analyze the role of NO during rehydration of the lichen Ramalina farinacea (L.) Ach., its isolated photobiont partner Trebouxia sp. and Asterochloris erici (Ahmadjian) Skaloud et Peksa (SAG 32.85 = UTEX 911).ResultsRehydration of R. farinacea caused the release of ROS and NO evidenced by the fluorescent probes DCFH2-DA and DAN respectively. However, a minimum in lipid peroxidation (MDA) was observed 2 h post-rehydration. The inhibition of NO in lichen thalli with c-PTIO resulted in increases in both ROS production and lipid peroxidation, which now peaked at 3 h, together with decreases in chlorophyll autofluorescence and algal photobleaching upon confocal laser incidence. Trebouxia sp. photobionts generate peaks of NO-endproducts in suspension and show high rates of photobleaching and ROS production under NO inhibition which also caused a significant decrease in photosynthetic activity of A. erici axenic cultures, probably due to the higher levels of photo-oxidative stress.ConclusionsMycobiont derived NO has an important role in the regulation of oxidative stress and in the photo-oxidative protection of photobionts in lichen thalli. The results point to the importance of NO in the early stages of lichen rehydration.


Annals of Botany | 2011

Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea

Alicia del Hoyo; Raquel Álvarez; Eva M. del Campo; Francisco Gasulla; Eva Barreno; Leonardo M. Casano

BACKGROUND AND AIMS Most lichens form associations with Trebouxia phycobionts and some of them simultaneously include genetically different algal lineages. In other symbiotic systems involving algae (e.g. reef corals), the relative abundances of different endosymbiotic algal clades may change over time. This process seems to provide a mechanism allowing the organism to respond to environmental stress. A similar mechanism may operate in lichens with more than one algal lineage, likewise protecting them against environmental stresses. Here, the physiological responses to oxidative stress of two distinct Trebouxia phycobionts (provisionally named TR1 and TR9) that coexist within the lichen Ramalina farinacea were analysed. METHODS Isolated phycobionts were exposed to oxidative stress through the reactive oxygen species propagator cumene hydroperoxide (CuHP). Photosynthetic pigments and proteins, photosynthesis (through modulated chlorophyll fluorescence), the antioxidant enzymes superoxide dismutase (SOD) and glutathione reductase (GR), and the stress-related protein HSP70 were analysed. KEY RESULTS Photosynthetic performance was severely impaired by CuHP in phycobionts, as indicated by decreases in the maximal PSII photochemical efficiency (F(v)/F(m)), the quantum efficiency of PSII (Φ(PSII)) and the non-photochemical dissipation of energy (NPQ). However, the CuHP-dependent decay in photosynthesis was significantly more severe in TR1, which also showed a lower NPQ and a reduced ability to preserve chlorophyll a, carotenoids and D1 protein. Additionally, differences were observed in the capacities of the two phycobionts to modulate antioxidant activities and HPS70 levels when exposed to oxidative stress. In TR1, CuHP significantly diminished HSP70 and GR but did not change SOD activities. In contrast, in TR9 the levels of both antioxidant enzymes and those of HSP70 increased in response to CuHP. CONCLUSIONS The better physiological performance of TR9 under oxidative conditions may reflect its greater capacity to undertake key metabolic adjustments, including increased non-photochemical quenching, higher antioxidant protection and the induction of repair mechanisms.


PLOS ONE | 2013

Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts.

Fernando Martínez-Alberola; Eva M. del Campo; David Lázaro-Gimeno; Sergio Mezquita-Claramonte; Arantxa Molins; Isabel Mateu-Andrés; Joan Pedrola-Monfort; Leonardo M. Casano; Eva Barreno

Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows extensive rearrangements but a medium size (150,897 nt) in comparison to most of angiosperms. A number of remarkable distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous phylogenies of Asteridae.


Plant Cell and Environment | 2013

The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach

Franscico Gasulla; Renuka Jain; Eva Barreno; Alfredo Guéra; Tiago S. Balbuena; Jay J. Thelen; Melvin J. Oliver

The study of desiccation tolerance of lichens, and of their chlorobionts in particular, has frequently focused on the antioxidant system that protects the cell against photo-oxidative stress during dehydration/rehydration cycles. In this study, we used proteomic and transcript analyses to assess the changes associated with desiccation in the isolated phycobiont Asterochloris erici. Algae were dried either slowly (5-6 h) or rapidly (<60 min), and rehydrated after 24 h in the desiccated state. To identify proteins that accumulated during the drying or rehydration processes, we employed two-dimensional (2D) difference gel electrophoresis (DIGE) coupled with individual protein identification using trypsin digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteomic analyses revealed that desiccation caused an increase in relative abundance of only 11-13 proteins, regardless of drying rate, involved in glycolysis, cellular protection, cytoskeleton, cell cycle, and targeting and degradation. Transcripts of five Hsp90 and two β-tubulin genes accumulated primarily at the end of the dehydration process. In addition, transmission electron microscopy (TEM) images indicate that ultrastructural cell injuries, perhaps resulting from physical or mechanical stress rather than metabolic damage, were more intense after rapid dehydration. This occurred with no major change in the proteome. These results suggest that desiccation tolerance of A. erici is achieved by constitutive mechanisms.


Photosynthetica | 2006

Effects of long-term ozone exposure on citrus: Chlorophyll a fluorescence and gas exchange

Ángeles Calatayud; Domingo J. Iglesias; Manuel Talon; Eva Barreno

Three-years-old trees of Satsuma mandarin (Citrus unshiu [Mak.] Marc.) cv. Okitsu were exposed to O3 fumigation during long term (one year) in open-top chambers. As a result of the treatment, chlorophyll a fluorescence and gas exchange parameters were modified with respect to trees growing in O3-free conditions. Net photosynthetic rate and stomatal conductance decreased and intercellular CO2 concentration increased according to a reduction of the non-cyclic electron flow and a lower capacity to reduce the quinone pool. O3 also reduced the development of non-photochemical quenching preventing the dissipation of excess excitation energy and, therefore, generated several alterations in photosynthetic apparatus. All these effects were obtained in long-term exposure and higher O3 concentration. In O3 ambient conditions, the effects were minor.

Collaboration


Dive into the Eva Barreno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simón Fos

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco J. García-Breijo

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Myriam Catalá

King Juan Carlos University

View shared research outputs
Researchain Logo
Decentralizing Knowledge