Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Bianconi is active.

Publication


Featured researches published by Eva Bianconi.


Annals of Human Biology | 2013

An estimation of the number of cells in the human body

Eva Bianconi; Allison Piovesan; Federica Facchin; Alina Beraudi; Raffaella Casadei; Flavia Frabetti; Lorenza Vitale; Maria Chiara Pelleri; Simone Tassani; Francesco Piva; Soledad Perez-Amodio; Pierluigi Strippoli; Silvia Canaider

Abstract Background: All living organisms are made of individual and identifiable cells, whose number, together with their size and type, ultimately defines the structure and functions of an organism. While the total cell number of lower organisms is often known, it has not yet been defined in higher organisms. In particular, the reported total cell number of a human being ranges between 1012 and 1016 and it is widely mentioned without a proper reference. Aim: To study and discuss the theoretical issue of the total number of cells that compose the standard human adult organism. Subjects and methods: A systematic calculation of the total cell number of the whole human body and of the single organs was carried out using bibliographical and/or mathematical approaches. Results: A current estimation of human total cell number calculated for a variety of organs and cell types is presented. These partial data correspond to a total number of 3.72 × 1013. Conclusions: Knowing the total cell number of the human body as well as of individual organs is important from a cultural, biological, medical and comparative modelling point of view. The presented cell count could be a starting point for a common effort to complete the total calculation.


Molecular Biology Reports | 2014

Characterization of human gene locus CYYR1: a complex multi-transcript system.

Raffaella Casadei; Maria Chiara Pelleri; Lorenza Vitale; Federica Facchin; Silvia Canaider; Pierluigi Strippoli; Matteo Vian; Allison Piovesan; Eva Bianconi; Elisa Mariani; Francesco Piva; Flavia Frabetti

Cysteine/tyrosine-rich 1 (CYYR1) is a gene we previously identified on human chromosome 21 starting from an in-depth bioinformatics analysis of chromosome 21 segment 40/105 (21q21.3), where no coding region had previously been predicted. CYYR1 was initially characterized as a four-exon gene, whose brain-derived cDNA sequencing predicts a 154-amino acid product. In this study we provide, with in silico and in vitro analyses, the first detailed description of the human CYYR1 locus. The analysis of this locus revealed that it is composed of a multi-transcript system, which includes at least seven CYYR1 alternative spliced isoforms and a new CYYR1 antisense gene (named CYYR1-AS1). In particular, we cloned, for the first time, the following isoforms: CYYR1-1,2,3,4b and CYYR1-1,2,3b, which present a different 3′ transcribed region, with a consequent different carboxy-terminus of the predicted proteins; CYYR1-1,2,4 lacks exon 3; CYYR1-1,2,2bis,3,4 presents an additional exon between exon 2 and exon 3; CYYR1-1b,2,3,4 presents a different 5′ untranslated region when compared to CYYR1. The complexity of the locus is enriched by the presence of an antisense transcript. We have cloned a long transcript overlapping with CYYR1 as an antisense RNA, probably a non-coding RNA. Expression analysis performed in different normal tissues, tumour cell lines as well as in trisomy 21 and euploid fibroblasts has confirmed a quantitative and qualitative variability in the expression pattern of the multi-transcript locus, suggesting a possible role in complex diseases that should be further investigated.


PLOS ONE | 2011

Complexity of Bidirectional Transcription and Alternative Splicing at Human RCAN3 Locus

Federica Facchin; Lorenza Vitale; Eva Bianconi; Francesco Piva; Flavia Frabetti; Pierluigi Strippoli; Raffaella Casadei; Maria Chiara Pelleri; Allison Piovesan; Silvia Canaider

Human RCAN3 (regulator of calcineurin 3) belongs to the human RCAN gene family. In this study we provide, with in silico and in vitro analyses, the first detailed description of the human multi-transcript RCAN3 locus. Its analysis revealed that it is composed of a multigene system that includes at least 21 RCAN3 alternative spliced isoforms (16 of them identified here for the first time) and a new RCAN3 antisense gene (RCAN3AS). In particular, we cloned RCAN3-1,3,4,5 (lacking exon 2), RCAN3-1a,2,3,4,5, RCAN3-1a,3,4,5, RCAN3-1b,2,3,4,5, RCAN3-1c,2,3,4,5, RCAN3-1c,2,4,5 and RCAN3-1c,3,4,5, isoforms that present a different 5′ untranslated region when compared to RCAN3. Moreover, in order to verify the possible 5′ incompleteness of previously identified cDNA isoforms with the reference exon 1, ten more alternative isoforms were retrieved. Bioinformatic searches allowed us to identify RCAN3AS, which overlaps in part with exon 1a, on the opposite strand, for which four different RCAN3AS isoforms were cloned. In order to analyze the different expression patterns of RCAN3 alternative first exons and of RCAN3AS mRNA isoforms, RT-PCR was performed in 17 human tissues. Finally, analyses of RCAN3 and RCAN3AS genomic sequences were performed to identify possible promoter regions, to examine donor and acceptor splice sequences and to compare evolutionary conservation, in particular of alternative exon 1 or 1c - exon 2 junctions in different species. The description of its number of transcripts, of their expression patterns and of their regulatory regions can be important to clarify the functions of RCAN3 gene in different pathways and cellular processes.


Current Pharmaceutical Biotechnology | 2015

Stem Cell Differentiation Stage Factors from Zebrafish Embryo : A Novel Strategy to Modulate the Fate of Normal and Pathological Human (Stem) Cells

Pier Mario Biava; Silvia Canaider; Federica Facchin; Eva Bianconi; Liza U. Ljungberg; Domenico Rotilio; Fabio Burigana; Carlo Ventura

In spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adipose-derived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device. In addition we report the data not yet published about a first protein analysis of the SCDSFs and about their role in a pathological condition like neurodegeneration.


Stem Cells International | 2018

Tissue Regeneration without Stem Cell Transplantation: Self-Healing Potential from Ancestral Chemistry and Physical Energies

Federica Facchin; Eva Bianconi; Silvia Canaider; Valentina Basoli; Pier Mario Biava; Carlo Ventura

The human body constantly regenerates after damage due to the self-renewing and differentiating properties of its resident stem cells. To recover the damaged tissues and regenerate functional organs, scientific research in the field of regenerative medicine is firmly trying to understand the molecular mechanisms through which the regenerative potential of stem cells may be unfolded into a clinical application. The finding that some organisms are capable of regenerative processes and the study of conserved evolutionary patterns in tissue regeneration may lead to the identification of natural molecules of ancestral species capable to extend their regenerative potential to human tissues. Such a possibility has also been strongly suggested as a result of the use of physical energies, such as electromagnetic fields and mechanical vibrations in human adult stem cells. Results from scientific studies on stem cell modulation confirm the possibility to afford a chemical manipulation of stem cell fate in vitro and pave the way to the use of natural molecules, as well as electromagnetic fields and mechanical vibrations to target human stem cells in their niche inside the body, enhancing human natural ability for self-healing.


International Journal of Medical Sciences | 2018

Comparison of Oxidative Stress Effects on Senescence Patterning of Human Adult and Perinatal Tissue-Derived Stem Cells in Short and Long-term Cultures

Federica Facchin; Eva Bianconi; Miriam Romano; Alessia Impellizzeri; Francesco Alviano; Margherita Maioli; Silvia Canaider; Carlo Ventura

Human Mesenchymal Stem Cells (hMSCs) undergo senescence in lifespan. In most clinical trials, hMSCs experience long-term expansion ex vivo to increase cell number prior to transplantation, which unfortunately leads to cell senescence, hampering post-transplant outcomes. Hydrogen peroxide (H2O2) in vitro represents a rapid, time and cost-effective tool, commonly used as oxidative stress tantalizing the stem cell ability to cope with a hostile environment, recapitulating the onset and progression of cellular senescence. Here, H2O2 at different concentrations (ranging from 50 to 400 μM) and time exposures (1 or 2 hours - h), was used for the first time to compare the behavior of human Adipose tissue-derived Stem Cells (hASCs) and human Whartons Jelly-derived MSCs (hWJ-MSCs), as representative of adult and perinatal tissue-derived stem cells, respectively. We showed timely different responses of hASCs and hWJ-MSCs at low and high subculture passages, concerning the cell proliferation, the cell senescence-associated β-Galactosidase activity, the capability of these cells to undergo passages, the morphological changes and the gene expression of tumor protein p53 (TP53, alias p53) and cyclin dependent kinase inhibitor 1A (CDKN1A, alias p21) post H2O2 treatments. The comparison between the hASC and hWJ-MSC response to oxidative stress induced by H2O2 is a useful tool to assess the biological mechanisms at the basis of hMSC senescence, but it could also provide two models amenable to test in vitro putative anti-senescence modulators and develop anti-senescence strategies.


Human & Experimental Toxicology | 2017

Albumin as marker for susceptibility to metal ions in metal-on-metal hip prosthesis patients

Federica Facchin; Simona Catalani; Eva Bianconi; Dalila De Pasquale; Susanna Stea; Aldo Toni; Silvia Canaider; Alina Beraudi

Metal-on-metal (MoM) hip prostheses are known to release chromium and cobalt (Co), which negatively affect the health status, leading to prosthesis explant. Albumin (ALB) is the main serum protein-binding divalent transition metals. Its binding capacity can be affected by gene mutations or modification of the protein N-terminal region, giving the ischaemia-modified albumin (IMA). This study evaluated ALB, at gene and protein level, as marker of individual susceptibility to Co in MoM patients, to understand whether it could be responsible for the different management of this ion. Co was measured in whole blood, serum and urine of 40 MoM patients. A mutational screening of ALB was performed to detect links between mutations and metal binding. Finally, serum concentration of total ALB and IMA were measured. Serum total ALB concentration was in the normal range for all patients. None of the subjects presented mutations in the investigated gene. Whole blood, serum and urine Co did not correlate with serum total ALB or IMA, although IMA was above the normal limit in most subjects. The individual susceptibility is very important for patients’ health status. Despite the limited results of this study, we provide indications on possible future investigations on the toxicological response to Co.


Genomics | 2012

Genome-scale analysis of human mRNA 5' coding sequences based on expressed sequence tag (EST) database.

Raffaella Casadei; Allison Piovesan; Lorenza Vitale; Federica Facchin; Maria Chiara Pelleri; Silvia Canaider; Eva Bianconi; Flavia Frabetti; Pierluigi Strippoli


Cell | 2014

Human Stem Cell Exposure to Developmental Stage Zebrafish Extracts: a Novel Strategy for Tuning Stemness and Senescence Patterning

Silvia Canaider; Margherita Maioli; Federica Facchin; Eva Bianconi; Sara Santaniello; Gianfranco Pigliaru; Liza U. Ljungberg; Fabio Burigana; Francesca Bianchi; Elena Olivi; Carlo Tremolada; Pier Mario Biava; Carlo Ventura


Molecular Medicine Reports | 2016

In vivo response of heme-oxygenase-1 to metal ions released from metal-on-metal hip prostheses

Alina Beraudi; Eva Bianconi; Simona Catalani; Silvia Canaider; Dalila De Pasquale; Pietro Apostoli; Barbara Bordini; Susanna Stea; Aldo Toni; Federica Facchin

Collaboration


Dive into the Eva Bianconi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Piva

Marche Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge