Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Éva Bokor is active.

Publication


Featured researches published by Éva Bokor.


Current Medicinal Chemistry | 2008

New inhibitors of glycogen phosphorylase as potential antidiabetic agents.

László Somsák; Marietta Tóth; Éva Bokor; Evangelia D. Chrysina; Kyra-Melinda Alexacou; Joseph M. Hayes; Costas Tiraidis; E. Lazoura; Demetres D. Leonidas; Spyros E. Zographos; Nikos G. Oikonomakos

The protein glycogen phosphorylase has been linked to type 2 diabetes, indicating the importance of this target to human health. Hence, the search for potent and selective inhibitors of this enzyme, which may lead to antihyperglycaemic drugs, has received particular attention. Glycogen phosphorylase is a typical allosteric protein with five different ligand binding sites, thus offering multiple opportunities for modulation of enzyme activity. The present survey is focused on recent new molecules, potential inhibitors of the enzyme. The biological activity can be modified by these molecules through direct binding, allosteric effects or other structural changes. Progress in our understanding of the mechanism of action of these inhibitors has been made by the determination of high-resolution enzyme inhibitor structures (both muscle and liver). The knowledge of the three-dimensional structures of protein-ligand complexes allows analysis of how the ligands interact with the target and has the potential to facilitate structure-based drug design. In this review, the synthesis, structure determination and computational studies of the most recent inhibitors of glycogen phosphorylase at the different binding sites are presented and analyzed.


Bioorganic & Medicinal Chemistry | 2010

Synthesis of 1-(d-glucopyranosyl)-1,2,3-triazoles and their evaluation as glycogen phosphorylase inhibitors

Éva Bokor; Tibor Docsa; Pál Gergely; László Somsák

1-(D-Glucopyranosyl)-1,2,3-triazoles were prepared from per-O-acetylated alpha- and beta-D-glucopyranosyl azides as well as per-O-benzoylated (beta-D-gluco-hept-2-ulopyranosylazide)onamide and onic acid methylester by using azide-alkyne cycloaddition catalysed by in situ generated Cu(I) under aqueous conditions. The O-acyl protecting groups were removed by the Zemplén protocol. The test compounds were assayed against rabbit muscle glycogen phosphorylase b to show that the beta-D-glucopyranosyl derivatives were superior inhibitors as compared to the two other series of triazoles.


Bioorganic & Medicinal Chemistry | 2009

Synthesis and structure-activity relationships of C-glycosylated oxadiazoles as inhibitors of glycogen phosphorylase

Marietta Tóth; Sándor Kun; Éva Bokor; Mahmoud Benltifa; Gaylord Tallec; Sébastien Vidal; Tibor Docsa; Pál Gergely; László Somsák; Jean Pierre Praly

A series of per-O-benzoylated 5-beta-D-glucopyranosyl-2-substituted-1,3,4-oxadiazoles was prepared by acylation of the corresponding 5-(beta-D-glucopyranosyl)tetrazole. As an alternative, oxidation of 2,6-anhydro-aldose benzoylhydrazones by iodobenzene I,I-diacetate afforded the same oxadiazoles. 1,3-Dipolar cycloaddition of nitrile oxides to per-O-benzoylated beta-D-glucopyranosyl cyanide gave the corresponding 5-beta-D-glucopyranosyl-3-substituted-1,2,4-oxadiazoles. The O-benzoyl protecting groups were removed by base-catalyzed transesterification. The 1,3,4-oxadiazoles were practically inefficient as inhibitors of rabbit muscle glycogen phosphorylase b while the 1,2,4-oxadiazoles displayed inhibitory activities in the micromolar range. The best inhibitors were the 5-beta-D-glucopyranosyl-3-(4-methylphenyl- and -2-naphthyl)-1,2,4-oxadiazoles (K(i)=8.8 and 11.6 microM, respectively). A detailed analysis of the structure-activity relationships is presented.


European Journal of Medicinal Chemistry | 2014

New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles, nanomolar inhibitors of glycogen phosphorylase.

Sándor Kun; Éva Bokor; Gergely Varga; Béla Szőcs; András Páhi; Marietta Tóth; László Juhász; Tibor Docsa; Pál Gergely; László Somsák

O-Perbenzoylated 5-(β-D-glucopyranosyl)tetrazole was reacted with N-benzyl carboximidoyl chlorides to give the corresponding 4-benzyl-3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles. Removal of the O-benzoyl and N-benzyl protecting groups by base catalysed transesterification and catalytic hydrogenation, respectively, furnished a series of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles with aliphatic, mono- and bicyclic aromatic, and heterocyclic substituents in the 5-position. Enzyme kinetic studies revealed these compounds to inhibit rabbit muscle glycogen phosphorylase b: best inhibitors were the 5-(4-aminophenyl)- (Ki 0.67 μM) and the 5-(2-naphthyl)-substituted (Ki 0.41 μM) derivatives. This study uncovered the C-glucopyranosyl-1,2,4-triazoles as a novel skeleton for nanomolar inhibition of glycogen phosphorylase.


Chemical Reviews | 2017

C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential

Éva Bokor; Sándor Kun; David Goyard; Marietta Tóth; Jean Pierre Praly; Sébastien Vidal; László Somsák

This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.


ACS Medicinal Chemistry Letters | 2015

4(5)-Aryl-2-C-glucopyranosyl-imidazoles as New Nanomolar Glucose Analogue Inhibitors of Glycogen Phosphorylase

Éva Bokor; Sándor Kun; Tibor Docsa; Pál Gergely; László Somsák

Inhibition of glycogen phosphorylases may lead to pharmacological treatments of diseases in which glycogen metabolism plays an important role: first of all in diabetes, but also in cardiovascular and tumorous disorders. C-(β-d-Glucopyranosyl) isoxazole, pyrazole, thiazole, and imidazole type compounds were synthesized, and the latter showed the strongest inhibition against rabbit muscle glycogen phosphorylase b. Most efficient was 2-(β-d-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole (11b, K i = 31 nM) representing the best nanomolar glucose derived inhibitor of the enzyme.


Carbohydrate Research | 2013

Synthesis of substituted 2-(β-d-glucopyranosyl)-benzimidazoles and their evaluation as inhibitors of glycogen phosphorylase

Éva Bokor; Enikő Szilágyi; Tibor Docsa; Pál Gergely; László Somsák

Microwave assisted condensation of O-perbenzoylated C-(β-d-glucopyranosyl)formic acid with 1,2-diaminobenzenes in the presence of triphenylphosphite gave the corresponding O-protected 2-(β-d-glucopyranosyl)-benzimidazoles in moderate yields. O-Perbenzoylated C-(β-d-glucopyranosyl)formamide and -thioformamide were transformed into the corresponding ethyl C-(β-d-glucopyranosyl)formimidate and -thioformimidate, respectively, by Et3O·BF4. Treatment of the formimidate with 1,2-diaminobenzenes afforded O-protected 2-(β-d-glucopyranosyl)-benzimidazoles in good to excellent yields. Similar reaction of the thioformimidate gave these compounds in lower yields. The O-benzoyl protecting groups were removed by the Zemplén protocol. These test compounds were assayed against rabbit muscle glycogen phosphorylase (GP) b, the prototype of liver GP, the rate limiting enzyme of glycogen degradation. The best inhibitors were 2-(β-d-glucopyranosyl)-4-methyl-benzimidazole (Ki=2.8μM) and 2-(β-d-glucopyranosyl)-naphtho[2,3-d]imidazole (Ki=2.1μM) exhibiting a ∼3-4 times stronger binding than the unsubstituted parent compound.


Carbohydrate Research | 2015

C-(2-Deoxy-d-arabino-hex-1-enopyranosyl)-oxadiazoles: synthesis of possible isomers and their evaluation as glycogen phosphorylase inhibitors

Éva Bokor; Eszter Szennyes; Tibor Csupász; Nóra Tóth; Tibor Docsa; Pál Gergely; László Somsák

Synthetic methods were elaborated for d-glucals attached to oxadiazoles by a C-C bond. Introduction of the double bond was effected by either DBU induced elimination of PhCOOH from the O-perbenzoylated glucopyranosyl precursors or Zn/N-methylimidazole mediated reductive elimination from the 1-bromoglucopyranosyl starting compounds. Alternatively, heterocyclizations of 2-deoxy-d-arabino-hex-1-enopyranosyl cyanide were also carried out. Test compounds were obtained by Zemplén debenzoylation, however, none of them showed significant inhibition of rabbit muscle glycogen phosphorylase b.


RSC Advances | 2015

Synthesis of 5-aryl-3-C-glycosyl- and unsymmetrical 3,5-diaryl-1,2,4-triazoles from alkylidene-amidrazones

Béla Szőcs; Éva Bokor; Katalin E. Szabó; Attila Kiss-Szikszai; Marietta Tóth; László Somsák

Among 1,2,4-triazole derivatives with versatile biological activities 3-C-glucopyranosyl-5-substituted-1,2,4-triazoles belong to the most efficient inhibitors of glycogen phosphorylase, and are thus potential antidiabetic agents. In seeking new synthetic methods for this class of compounds oxidative ring closures of N1-alkylidene carboxamidrazones were studied. O-Peracylated N1-(β-D-glycopyranosylmethylidene)-arenecarboxamidrazones were prepared from the corresponding glycosyl cyanides and amidrazones by Raney-Ni® reduction in the presence of NaH2PO2. Bromination of the so obtained compounds by NBS gave hydrazonoyl bromide type derivatives which were ring closed to 3-C-glycosyl-5-substituted-1,2,4-triazoles in pyridine or by NH4OAc in AcOH. Under the same conditions O-perbenzoylated N1-arylidene-C-(β-D-glucopyranosyl)-formamidrazones gave the expected 1,2,4-triazoles as minor products only. N1-Arylidene-arenecarboxamidrazones were also transformed into 3,5-diaryl-1,2,4-triazoles with NBS/NH4OAc in AcOH indicating high functional group tolerance and general applicability of the method.


Carbohydrate Research | 2014

Synthesis of C-xylopyranosyl- and xylopyranosylidene-spiro-heterocycles as potential inhibitors of glycogen phosphorylase

László Somsák; Éva Bokor; Beáta Czibere; Csenge Koppány; László Kulcsár; Sándor Kun; Enikő Szilágyi; Marietta Tóth; Tibor Docsa; Pál Gergely

New derivatives of d-xylose with aglycons of the most efficient glucose derived inhibitors of glycogen phosphorylase were synthesized to explore the specificity of the enzyme towards the structure of the sugar part of the molecules. Thus, 2-(β-d-xylopyranosyl)benzimidazole and 3-substituted-5-(β-d-xylopyranosyl)-1,2,4-triazoles were obtained in multistep procedures from O-perbenzoylated β-d-xylopyranosyl cyanide. Cycloadditions of nitrile-oxides and O-peracetylated exo-xylal obtained from the corresponding β-d-xylopyranosyl cyanide furnished xylopyranosylidene-spiro-isoxazoline derivatives. Oxidative ring closure of O-peracetylated β-d-xylopyranosyl-thiohydroximates prepared from 1-thio-β-d-xylopyranose and nitrile-oxides gave xylopyranosylidene-spiro-oxathiazoles. The fully deprotected test compounds were assayed against rabbit muscle glycogen phosphorylase b to show moderate inhibition for 3-(2-naphthyl)-5-(β-d-xylopyranosyl)-1,2,4-triazole (IC50=0.9mM) only.

Collaboration


Dive into the Éva Bokor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tibor Docsa

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sándor Kun

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge