Eva Branda
University of Perugia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva Branda.
Mini-reviews in Medicinal Chemistry | 2008
Pietro Buzzini; Panagiotis Arapitsas; Marta Goretti; Eva Branda; Benedetta Turchetti; Patrizia Pinelli; Francesca Ieri; Annalisa Romani
Hydrolysable tannins (HTs), secondary metabolites widely distributed in the plant kingdom, are generally multiple esters of gallic acid with glucose. HTs have been shown to be effective antagonists against viruses, bacteria and eukaryotic microorganisms. The present review examines the antimicrobial and antiviral activity of HTs, the mechanism(s) of action, and some structure-activity relationships.
FEMS Microbiology Ecology | 2012
Pietro Buzzini; Eva Branda; Marta Goretti; Benedetta Turchetti
Glacial habitats (cryosphere) include some of the largest unexplored and extreme biospheres on Earth. These habitats harbor a wide diversity of psychrophilic prokaryotic and eukaryotic microorganisms. These highly specialized microorganisms have developed adaptation strategies to overcome the direct and indirect life-endangering influence of low temperatures. For many years Antarctica has been the geographic area preferred by microbiologists for studying the diversity of psychrophilic microorganisms (including yeasts). However, there have been an increasing number of studies on psychrophilic yeasts sharing the non-Antarctic cryosphere. The present paper provides an overview of the distribution and adaptation strategies of psychrophilic yeasts worldwide. Attention is also focused on their biotechnological potential, especially on their exploitation as a source of cold-active enzymes and for bioremediation purposes.
FEMS Microbiology Ecology | 2010
Eva Branda; Benedetta Turchetti; Guglielmina Diolaiuti; Massimo Pecci; Claudio Smiraglia; Pietro Buzzini
The present study reports the characterization of psychrophilic yeast and yeast-like diversity in cold habitats (superficial and deep sediments, ice cores and meltwaters) of the Calderone Glacier (Italy), which is the southernmost glacier in Europe. After incubation at 4 and 20 degrees C, sediments contained about 10(2)-10(3) CFU of yeasts g(-1). The number of viable yeast cells in ice and meltwaters was several orders of magnitude lower. The concomitant presence of viable bacteria and filamentous fungi has also been observed. In all, 257 yeast strains were isolated and identified by 26S rRNA gene D1/D2 and internal transcribed spacers (1 and 2) sequencing as belonging to 28 ascomycetous and basidiomycetous species of 11 genera (Candida, Cystofilobasidium, Cryptococcus, Dioszegia, Erythrobasidium, Guehomyces, Mastigobasidium, Mrakia, Mrakiella, Rhodotorula and Sporobolomyces). Among them, the species Cryptococcus gastricus accounted for almost 40% of the total isolates. In addition, 12 strains were identified as belonging to the yeast-like species Aureobasidium pullulans and Exophiala dermatitidis, whereas 15 strains, presumably belonging to new species, yet to be described, were also isolated. Results herein reported indicate that the Calderone Glacier, although currently considered a vanishing ice body due to the ongoing global-warming phenomenon, still harbors viable psychrophilic yeast populations. Differences of yeast and yeast-like diversity between the glacier under study and other worldwide cold habitats are also discussed.
Extremophiles | 2010
Skye R. Thomas-Hall; Benedetta Turchetti; Pietro Buzzini; Eva Branda; Teun Boekhout; Bart Theelen; Kenneth Watson
Worldwide glaciers are annually retreating due to global overheating and this phenomenon determines the potential lost of microbial diversity represented by psychrophilic microbial population sharing these peculiar habitats. In this context, yeast strains, all unable to grow above 20°C, consisting of 42 strains from Antarctic soil and 14 strains isolated from Alpine Glacier, were isolated and grouped together based on similar morphological and physiological characteristics. Sequences of the D1/D2 and ITS regions of the ribosomal DNA confirmed the previous analyses and demonstrated that the strains belong to unknown species. Three new species are proposed: Mrakia robertii sp. nov. (type strain CBS 8912), Mrakia blollopis sp. nov. (type strain CBS 8921) and a related anamorphic species Mrakiella niccombsii sp. nov. (type strain CBS 8917). Phylogenetic analysis of the ITS region revealed that the new proposed species were closely related to each other within the Mrakia clade in the order Cystofilobasidiales, class Tremellomycetes. The Mrakia clade now contains 8 sub-clades. Teliospores were observed in all strains except CBS 8918 and for the Mrakiella niccombsii strains.
Extremophiles | 2011
Benedetta Turchetti; Skye R. Thomas Hall; Laurie B. Connell; Eva Branda; Pietro Buzzini; Bart Theelen; Wally H. Müller; Teun Boekhout
Field campaigns in Antarctica, Greenland and the Italian glaciers aiming to explore the biodiversity of these disappearing environments identified several undescribed yeast strains unable to grow at temperature above 20°C and belonging to unknown species. Fourteen of these strains were selected and grouped based on their morphological and physiological characteristics. Sequences of the D1/D2 and ITS regions of the ribosomal RNA demonstrated that the strains belong to unknown species related to Leucosporidium antarcticum. The new genus Glaciozyma is proposed and two new species are described, namely Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Additionally, re-classification of Leucosporidium antarcticum as Glaciozymaantarctica is proposed. Strains of Glaciozyma form a monophyletic clade and a well separated lineage within class Microbotryomycetes (Pucciniomycotina, Basidiomycota). The description of Glaciozyma genus and the re-classification of L. antarcticum reduce the polyphyletic nature of the genus Leucosporidium.
International Journal of Food Microbiology | 2009
Marta Goretti; Benedetta Turchetti; Morena Buratta; Eva Branda; Lanfranco Corazzi; Ann Vaughan-Martini; Pietro Buzzini
The in vitro antimycotic activity of a purified killer protein (KT4561) secreted by a strain of Williopsis saturnus was tested against 310 yeast strains belonging to 21 food spoilage species of 14 genera (Candida, Debaryomyces, Dekkera, Hanseniaspora, Issatchenkia, Kazachstania, Kluyveromyces, Pichia, Rhodotorula, Saccharomyces, Schizosaccharomyces, Torulaspora, Yarrowia and Zygosaccharomyces). Minimum inhibitory concentration (MIC) determinations showed that over 65% of the target strains were susceptible to concentrations < or = 32 microg/ml of KT4561. Three conventional food-grade antimicrobial agents were used as controls: 41, 33 and 40% of the target strains were sensitive to < or = 512 mg/ml of ethyl 3-hydroxybenzoate (E214), potassium sorbate (E202) or potassium metabisulphite (E224), respectively. The susceptibility of food spoilage yeasts towards KT4561, E214, E202 and E224 was species- and strain-dependent. In most cases KT4561 exhibited MIC values several orders of magnitude lower (100 to 100,000 times) than those observed for E214, E202 and E224. With only a few exceptions, the activity of KT4561 was pH-, ethanol-, glucose- and NaCl-independent. The present study demonstrates the potential of this yeast killer protein as a novel and natural control agent against food spoilage yeasts.
Journal of Dairy Science | 2010
M. Ricchi; Marta Goretti; Eva Branda; G. Cammi; C.A. Garbarino; Benedetta Turchetti; P. Moroni; N. Arrigoni; Pietro Buzzini
One hundred sixty-one Prototheca spp. strains isolated from composite milk and barn-surrounding environmental samples (bedding, feces, drinking, or washing water, surface swabs) of 24 Italian dairy herds were characterized by genotype-specific PCR analysis. Overall, 97.2% of strains isolated from composite milk samples were characterized as Prototheca zopfii genotype 2, confirming its role as the main mastitis pathogen, whereas Prototheca blaschkeae was only sporadically isolated (2.8%). Regarding environmental sampling, 84.9% of isolates belonged to P. zopfii genotype 2, 13.2% to P. blaschkeae, and 1.9% to P. zopfii genotype 1. The data herein contradict previous hypotheses about the supposed exclusive role of P. zopfii genotype 2 as the causative agent of protothecal mastitis and, on the contrary, confirm the hypothesis that such pathology could be caused by P. blaschkeae in a few instances.
FEMS Microbiology Ecology | 2013
Benedetta Turchetti; Marta Goretti; Eva Branda; Guglielmina Diolaiuti; Carlo D'Agata; Claudio Smiraglia; Andrea Onofri; Pietro Buzzini
The influence of some abiotic variables (pH, dry weight, organic carbon, nitrogen and phosphorous) on culturable yeast diversity in two distinct, but adjacent Alpine glaciers (Glacier du Géant, France, and Miage Glacier, Italy) was investigated. In all, 682 yeast strains were isolated and identified by D1/D2 and ITS sequencing as belonging to species of the genera Aureobasidium, Candida, Bulleromyces, Cryptococcus, Cystofilobasidium, Dioszegia, Guehomyces, Holtermanniella, Leucosporidiella, Mrakia, Mrakiella, Rhodotorula, Sporidiobolus, Sporobolomyces and Udenyomyces. Overall, the most represented genera were Cryptococcus (55% of isolates), Rhodotorula (17%) and Mrakia (10%). About 10% of strains, presumably belonging to new species (yet to be described), were preliminarily identified at the genus level. Principal component analysis (PCA) revealed that organic carbon, nitrogen and phosphorous are apparently mostly related to culturable yeast abundance and diversity. In this context, the hypothesis that the frequency of isolation of certain species may be correlated with some organic nutrients (with special emphasis for phosphorous) is discussed.
Medical Mycology | 2008
Pietro Buzzini; Benedetta Turchetti; Eva Branda; Marta Goretti; Marco Amici; Paul Emile Lagneau; Licia Scaccabarozzi; V. Bronzo; P. Moroni
A large scale screening of the in vitro susceptibility of 105 strains of Prototheca zopfii to a panel of polyene antibiotics (amphotericin B, nystatin, primaricin and filipin) was conducted. Strains studied were isolated from dairy-associated environments in five different localities. Groups 1-4 included strains recovered from four separate regions of Italy, while group 5 included isolates from Belgium. Amphotericin B and primaricin exhibited the highest activity, with th MIC90 ranging from 4 and 8 microg/ml, respectively. On the other hand, the MIC90 of nystatin and filipin were from two to four times higher. Two strains were resistant to all four polyenes tested. The above results are compared with those in the literature and the importance of carrying out large-scale screening surveys to assess polyene susceptibility patterns within the species P. zopfii is discussed.
Plant Biosystems | 2013
Oriana Maggi; Solveig Tosi; Maria Angelova; Elisa Lagostina; Anna Adele Fabbri; Elisa Altobelli; Anna Maria Picco; Elena Savino; Eva Branda; Benedetta Turchetti; Mirca Zotti; Alfredo Vizzini; Pietro Buzzini
A wide range of cold environments exist, with an equally broad variety of fungi and yeasts that have adapted to such environments. These adaptations, which affect membranes, enzymes and other cellular components, such as radical scavenging molecules, display a great potential for exploitation in biotechnology. Alterations have been detected in membrane lipids, with an increase in fatty acid unsaturated bonds that enhance their fluidity. We report new data on the different phospholipid composition in membrane lipids in the same fungal species from both Antarctic and temperate regions. The decrease in temperature causes intracellular oxidative stress by inducing the generation of reactive oxygen species. We report the results of the first analysis of the non-enzymatic antioxidant response and phenolic compound production by an Antarctic strain of Geomyces pannorum. A survey on yeasts from the cryosphere is reported with a focus on their adaptation to a cold environment. Some studies have shown that the number of macrofungi in glacier forefronts rises as deglaciation increases. The survival success of many plants in such areas may be attributed to their mycorrhizal associations. We highlighted the macrofungal biodiversity of some Italian alpine habitats, in which we Inocybe microfastigiata, Laccaria montana and Lactarius salicis-herbaceae were recorded for the first time in Lombardy (Italy).