Eva Falge
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva Falge.
Bulletin of the American Meteorological Society | 2001
Dennis D. Baldocchi; Eva Falge; Lianhong Gu; R. J. Olson; David Y. Hollinger; Steven W. Running; Peter M. Anthoni; Ch. Bernhofer; Kenneth J. Davis; Robert H. Evans; Jose D. Fuentes; Allen H. Goldstein; Gabriel G. Katul; Beverly E. Law; Xuhui Lee; Yadvinder Malhi; Tilden P. Meyers; William Munger; Walter Oechel; Kim Pilegaard; Hans Peter Schmid; Riccardo Valentini; Shashi B. Verma; Timo Vesala; Kell B. Wilson; S. C. Wofsy
FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO 2 exchange of temperate broadleaved forests increases by about 5.7 g C m −2 day −1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.
Agricultural and Forest Meteorology | 2002
Kell B. Wilson; Allen H. Goldstein; Eva Falge; Marc Aubinet; Dennis D. Baldocchi; Paul Berbigier; Christian Bernhofer; R. Ceulemans; Han Dolman; Christopher B. Field; Achim Grelle; A. Ibrom; Beverly E. Law; Andrew S. Kowalski; Tilden P. Meyers; John Moncrieff; Russell K. Monson; Walter Oechel; John Tenhunen; Riccardo Valentini; Shashi B. Verma
A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site-years in FLUXNET, a network of eddy covariance sites measuring long-term carbon and energy fluxes in contrasting ecosystems and climates. Energy balance closure was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat (LE)) against available energy (net radiation, less the energy stored) and by solving for the energy balance ratio, the ratio of turbulent energy fluxes to available energy. These methods indicate a general lack of closure at most sites, with a mean imbalance in the order of 20%. The imbalance was prevalent in all measured vegetation types and in climates ranging from Mediterranean to temperate and arctic. There were no clear differences between sites using open and closed path infrared gas analyzers. At a majority of sites closure improved with turbulent intensity (friction velocity), but lack of total closure was still prevalent under most conditions. The imbalance was greatest during nocturnal periods. The results suggest that estimates of the scalar turbulent fluxes of sensible and LE are underestimated and/or that available energy is overestimated. The implications on interpreting long-term CO2 fluxes at FLUXNET sites depends on whether the imbalance results primarily from general errors associated
Agricultural and Forest Meteorology | 2002
Peter E. Thornton; B. E. Law; Henry L. Gholz; Kenneth L. Clark; Eva Falge; David S. Ellsworth; Allen H. Goldstein; Russell K. Monson; David Y. Hollinger; Michael W. Falk; Jiquan Chen; Jed P. Sparks
The effects of disturbance history, climate, and changes in atmospheric carbon dioxide (CO2) concentration and nitrogen deposition (Ndep) on carbon and water fluxes in seven North American evergreen forests are assessed using a coupled water–carbon–nitrogen model, canopy-scale flux observations, and descriptions of the vegetation type, management practices, and disturbance histories at each site. The effects of interannual climate variability, disturbance history, and vegetation ecophysiology on carbon and water fluxes and storage are integrated by the ecosystem process model Biome-BGC, with results compared to site biometric analyses and eddy covariance observations aggregated by month and year. Model results suggest that variation between sites in net ecosystem carbon exchange (NEE) is largely a function of disturbance history, with important secondary effects from site climate, vegetation ecophysiology, and changing atmospheric CO2 and Ndep. The timing and magnitude of fluxes following disturbance depend on disturbance type and intensity, and on post-harvest management treatments such as burning, fertilization and replanting. The modeled effects of increasing atmospheric CO 2 on NEE are generally limited by N availability, but are greatly increased following disturbance due to increased N mineralization and reduced plant N demand. Modeled rates of carbon sequestration over the past 200 years are driven by the rate of change in CO2 concentration for old sites experiencing low rates of N dep. The model produced good estimates of between-site variation in leaf area index, with mixed performance for between- and within-site variation in evapotranspiration. There is a model bias
Boundary-Layer Meteorology | 2000
Dennis D. Baldocchi; John Finnigan; Kell B. Wilson; Eva Falge
To assess annual budgets of CO2 exchange betweenthe biosphere and atmosphere over representativeecosystems, long-term measurements must be made overecosystems that do not exist on ideal terrain. How tointerpret eddy covariance measurements correctlyremains a major task. At present, net ecosystemCO2 exchange is assessed, by members of themicrometeorological community, as the sum of eddycovariance measurements and the storage of CO2 inthe underlying air. This approach, however, seemsunsatisfactory as numerous investigators are reportingthat it may be causing nocturnal respiration fluxdensities to be underestimated.A new theory was recently published by Lee (1998, Agricultural and Forest Meteorology91: 39–50) for assessing net ecosystem-atmosphere CO2 exchange(Ne) over non-ideal terrain. Itincludes a vertical advection term. We apply thisequation over a temperate broadleaved forest growingin undulating terrain. Inclusion of the verticaladvection term yields hourly, daily and annual sums ofnet ecosystem CO2 exchange that are moreecologically correct during the growing season.During the winter dormant period, on the other hand,corrected CO2 flux density measurements of anactively respiring forest were near zero. Thisobservation is unrealistic compared to chambermeasurements and model calculations. Only duringmidday, when the atmosphere is well-mixed, domeasurements of Ne match estimatesbased on model calculations and chamber measurements. On an annual basis, sums of Newithout the advection correction were 40% too large,as compared with computations derived from a validatedand process-based model. With the inclusion of theadvection correction term, we observe convergencebetween measured and calculated values ofNe on hourly, daily and yearly time scales. We cannot, however, conclude that inclusion of aone-dimensional, vertical advection term into thecontinuity equation is sufficient for evaluatingCO2 exchange over tall forests in complexterrain. There is an indication that the neglected term,ū(∂ c¯/∂ x), isnon-zero and that CO2 may be leakingfrom the sides of the control volume during the winter. In this circumstance, forest floor CO2 effluxdensities exceed effluxes measured above the canopy.
Water Resources Research | 2002
Kell B. Wilson; Dennis D. Baldocchi; Marc Aubinet; Paul Berbigier; Christian Bernhofer; Han Dolman; Eva Falge; Christopher B. Field; Allen H. Goldstein; André Granier; Achim Grelle; Thorgeirsson Halldor; D. Y. Hollinger; Gabriel G. Katul; Beverly E. Law; Anders Lindroth; Tilden P. Meyers; John Moncrieff; Russell K. Monson; Walter Oechel; John Tenhunen; Riccardo Valentini; Shashi B. Verma; Timo Vesala; Steven C. Wofsy
The warm season (mid-June through late August) partitioning between sensible (H) and latent (LE) heat flux, or the Bowen ratio (beta=H/LE), was investigated at 27 sites over 66 site years within the international network of eddy covariance sites (FLUXNET). Variability in beta across ecosystems and climates was analyzed by quantifying general climatic and surface characteristics that control flux partitioning. The climatic control on beta was quantified using the climatological resistance (R-i), which is proportional to the ratio of vapor pressure deficit (difference between saturation vapor pressure and atmospheric vapor pressure) to net radiation (large values of R-i decrease beta). The control of flux partitioning by the vegetation and underlying surface was quantified by computing the surface resistance to water vapor transport (R-c, with large values tending to increase beta). There was a considerable range in flux partitioning characteristics (R-c, R-i and beta) among sites, but it was possible to define some general differences between vegetation types and climates. Deciduous forest sites and the agricultural site had the lowest values of R-c and beta (0.25-0.50). Coniferous forests typically had a larger R-c and higher beta (typically between 0.50 and 1.00 but also much larger). However, there was notable variability in R-c and R-i between coniferous site years, most notably differences between oceanic and continental climates and sites with a distinct dry summer season (Mediterranean climate). Sites with Mediterranean climates generally had the highest net radiation, R-c, R-i, and beta. There was considerable variability in beta between grassland site years, primarily the result of interannual differences in soil water content and R-c
Agricultural and Forest Meteorology | 2001
Dennis D. Baldocchi; Eva Falge; Kell B. Wilson
The advent of long-term studies on CO2 and water vapor exchange provides us with new information on how the atmosphere and biosphere interact. Conventional time series analysis suggests that temporal fluctuations of weather variables and mass and energy flux densities occur on numerous time scales. The time scales of variance that are associated with annual time series of meteorological variables, scalar flux densities and their covariance with one another, however, remain unquantified. We applied Fourier analysis to time series (4 years in duration) of photon flux density, air temperature, wind speed, pressure and the flux densities of CO 2 and water vapor. At the daily time scale, strong spectral peaks occurred in the meteorological and flux density records at periods of 12 and 24 h, due to the daily rising and setting of the sun. At the synoptic time scale (3‐7 days) the periodic passage of weather fronts alter available sunlight and temperature. In turn, variations in these state variables affect carbon assimilation, respiration and transpiration. At the seasonal and semi-annual time scales, a broad spectral peak occurs due to seasonal changes in weather and plant functionality and phenology. In general, 21% of the variance of CO2 exchange is associated with the annual cycle, 43% of the variance is associated with the diurnal cycle and 9% is associated with the semi-annual time scale. A pronounced spectral gap was associated with periods 3‐4 weeks long. Interactions between CO2 flux density ( Fc) and sunlight, air temperature and latent heat flux density were quantified using co-spectral, coherence and phase angle analyzes. Coherent and in-phase spectral peaks occur between CO2 exchange rates and water vapor exchange on annual, seasonal and daily time scales. A 180 phase shift occurs between Fc and photon flux density (Qp) on seasonal and daily time scales because the temporal course of sunlight corresponds with the withdrawal of CO2 from the atmosphere, a flux that possesses a negative sign. Covariations between Fc and Tair experience a 180 phase shift with one another at the seasonal time scale because rising temperatures are associated with more carbon uptake. At daily time scales the phase angle between Fc and Tair is on the order of 130. This phase lag can be explained by the strong dependence of canopy photosynthesis on available light and the 2‐3 h lags, which occur between the daily course of sunlight and air temperature.
Agricultural and Forest Meteorology | 2002
Eva Falge; John Tenhunen; Dennis D. Baldocchi; Marc Aubinet; Peter S. Bakwin; Paul Berbigier; Christian Bernhofer; Jean-Marc Bonnefond; George Burba; Robert Clement; Kenneth J. Davis; J.A. Elbers; Matthias Falk; Allen H. Goldstein; Achim Grelle; André Granier; Thomas Grünwald; J. Guðmundsson; David Y. Hollinger; Ivan A. Janssens; P. Keronen; Andrew S. Kowalski; Gabriel G. Katul; Beverly E. Law; Yadvinder Malhi; Tilden P. Meyers; Russell K. Monson; E.J. Moors; J. William Munger; Walter Oechel
As length and timing of the growing season are major factors explaining differences in carbon exchange of ecosystems, we analyzed seasonal patterns of net ecosystem carbon exchange (FNEE) using eddy covariance data of the FLUXNET data base (http://www-eosdis.ornl.gov/FLUXNET). The study included boreal and temperate, deciduous and coniferous forests, Mediterranean evergreen systems, rainforest, native and managed temperate grasslands, tundra, and C3 and C4 crops. Generalization of seasonal patterns are useful for identifying functional vegetation types for global dynamic vegetation models, as well as for global inversion studies, and can help improve phenological modules in SVAT or biogeochemical models. The results of this study have important validation potential for global carbon cycle modeling. The phasing of respiratory and assimilatory capacity differed within forest types: for temperate coniferous forests seasonal uptake and release capacities are in phase, for temperate deciduous and boreal coniferous forests, release was delayed compared to uptake. According to seasonal pattern of maximum nighttime release (evaluated over 15-day periods, Fmax) the study sites can be grouped in four classes: (1) boreal and high altitude conifers and grasslands; (2) temperate deciduous and temperate conifers; (3) tundra and crops; (4) evergreen Mediterranean and tropical forests. Similar results are found for maximum daytime uptake (Fmin) and the integral net carbon flux, but temperate deciduous forests fall into class 1. For forests, seasonal amplitudes of Fmax and Fmin increased in the order tropical C3-crops>temperate deciduous forests>temperate conifers>boreal conifers>tundra ecosystems. Due to data restrictions, our analysis centered mainly on Northern Hemisphere temperate and boreal forest ecosystems. Grasslands, crops, Mediterranean ecosystems, and rainforests are under-represented, as are savanna systems, wooded grassland, shrubland, or year-round measurements in tundra systems. For regional or global estimates of carbon sequestration potentials, future investigations of eddy covariance should expand in these systems.
Plant and Soil | 2005
Sascha Reth; Markus Reichstein; Eva Falge
To quantify the effects of soil temperature (Tsoil), and relative soil water content (RSWC) on soil respiration we measured CO2 soil efflux with a closed dynamic chamber in situ in the field and from soil cores in a controlled climate chamber experiment. Additionally we analysed the effect of soil acidity and fine root mass in the field. The analysis was performed on three meadow, two bare fallow and one forest sites. The influence of soil temperature on CO2 emissions was highly significant with all land-use types, except for one field campaign with continuous rain. Where soil temperature had a significant influence, the percentage of variance explained by soil temperature varied from site to site from 13–46% in the field and 35–66% in the climate chamber. Changes of soil moisture influenced only the CO2 efflux on meadow soils in field and climate chamber (14–34% explained variance), whereas on the bare soil and the forest soil there was no visible effect. The spatial variation of soil CO2 emission in the field correlated significantly with the soil pH and fine root mass, explaining up to 24% and 31% of the variability. A non-linear regression model was developed to describe soil CO2 efflux as a function of soil temperature, soil moisture, pH-value and root mass. With the model we could explain 60% of the variability in soil CO2 emission of all individual field chamber measurements. Through the model analysis we highlight the temporal influence of rain events. The model overestimated the observed fluxes during and within four hours of the last rain event. Conversely, after more than 72h without rain the model underestimated the fluxes. Between four and 72 h after rainfall, the regression model of soil CO2 emission explained up to 91% of the variance.
Ecosystems | 2003
Galina Churkina; John Tenhunen; Peter E. Thornton; Eva Falge; J.A. Elbers; Markus Erhard; Thomas Grünwald; Andrew S. Kowalski; Üllar Rannik; Detlef F. Sprinz
AbstractThis paper provides the first steps toward a regional-scale analysis of carbon (C) budgets. We explore the ability of the ecosystem model BIOME-BGC to estimate the daily and annual C dynamics of four European coniferous forests and shifts in these dynamics in response to changing environmental conditions. We estimate uncertainties in the model results that arise from incomplete knowledge of site management history (for example, successional stage of forest). These uncertainties are especially relevant in regional-scale simulations, because this type of information is difficult to obtain. Although the model predicted daily C and water fluxes reasonably well at all sites, it seemed to have a better predictive capacity for the photosynthesis-related processes than for respiration. Leaf area index (LAI) was modeled accurately at two sites but overestimated at two others (as a result of poor long-term climate drivers and uncertainties in model parameterization). The overestimation of LAI (and consequently gross photosynthetic production (GPP)), in combination with reasonable estimates of the daily net ecosystem productivity (NEP) of those forests, also illustrates the problem with modeled respiration. The model results suggest that all four European forests have been net sinks of C at the rate of 100–300 gC/m2/y and that this C sequestration capacity would be 30%–70% lower without increasing nitrogen (N) deposition and carbon dioxide (CO2) concentrations. The magnitude of the forest responses was dependent not only on the rate of changes in environmental factors, but also on site-specific conditions such as climate and soil depth. We estimated that the modeled C exchange at the study sites was reduced by 50%–100% when model simulations were performed for climax forests rather than regrowing forests. The estimates of water fluxes were less sensitive to different initializations of state variables or environmental change scenarios than C fluxes.
Trees-structure and Function | 1996
Eva Falge; Werner Graber; Rolf T. W. Siegwolf; John Tenhunen
Databases describing branch gas exchange ofPicea abies L. at two montane forest sites, Lägeren, Switzerland (National Forschungsprojekt 14 of the Schweizerische Nationalfonds) and Oberwarmensteinach, Germany (Bayerische Forschungsgruppe Forsttoxikologie), were analyzed in conjunction with a physiologically based model. Parameter estimates for describing carboxylase kinetics, electron transport, and stomatal function were derived, utilizing information from both single factor dependencies and diurnal time course measurements of gas exchange. Data subsets were used for testing the model at the branch level. Most of the observed variation in gas exchange characteristics can be explained with the model, while a number of systematic errors remain unexplained. Factors seen as contributing to the unexplained residual variation and not included in the model are light acclimation, degree of damage in adjustment to pollutant deposition, needle age, and cold stress effects. Nevertheless, a set of parameter values has been obtained for general application with spruce, e.g., for use in calculating canopy flux rates and to aid in planning of focused leaf and canopy level experiments. The value of the model for estimating fluxes between the forest and the atmosphere must be evaluated together with measurements at the stand level.