Eva K.F. Chan
Garvan Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva K.F. Chan.
PLOS Biology | 2011
Eva K.F. Chan; Heather C. Rowe; Jason A. Corwin; Bindu Joseph; Daniel J. Kliebenstein
Genome-wide association mapping is highly sensitive to environmental changes, but network analysis allows rapid causal gene identification.
Genetics | 2010
Eva K.F. Chan; Heather C. Rowe; Daniel J. Kliebenstein
With the improvement and decline in cost of high-throughput genotyping and phenotyping technologies, genome-wide association (GWA) studies are fast becoming a preferred approach for dissecting complex quantitative traits. Glucosinolate (GSL) secondary metabolites within Arabidopsis spp. can serve as a model system to understand the genomic architecture of quantitative traits. GSLs are key defenses against insects in the wild and the relatively large number of cloned quantitative trait locus (QTL) controlling GSL traits allows comparison of GWA to previous QTL analyses. To better understand the specieswide genomic architecture controlling plant-insect interactions and the relative strengths of GWA and QTL studies, we conducted a GWA mapping study using 96 A. thaliana accessions, 43 GSL phenotypes, and ∼230,000 SNPs. Our GWA analysis identified the two major polymorphic loci controlling GSL variation (AOP and MAM) in natural populations within large blocks of positive associations encompassing dozens of genes. These blocks of positive associations showed extended linkage disequilibrium (LD) that we hypothesize to have arisen from balancing or fluctuating selective sweeps at both the AOP and MAM loci. These potential sweep blocks are likely linked with the formation of new defensive chemistries that alter plant fitness in natural environments. Interestingly, this GWA analysis did not identify the majority of previously identified QTL even though these polymorphisms were present in the GWA population. This may be partly explained by a nonrandom distribution of phenotypic variation across population subgroups that links population structure and GSL variation, suggesting that natural selection can hinder the detection of phenotype–genotype associations in natural populations.
PLOS Pathogens | 2010
Heather C. Rowe; Justin W. Walley; Jason A. Corwin; Eva K.F. Chan; Katayoon Dehesh; Daniel J. Kliebenstein
Despite the described central role of jasmonate signaling in plant defense against necrotrophic pathogens, the existence of intraspecific variation in pathogen capacity to activate or evade plant jasmonate-mediated defenses is rarely considered. Experimental infection of jasmonate-deficient and jasmonate-insensitive Arabidopsis thaliana with diverse isolates of the necrotrophic fungal pathogen Botrytis cinerea revealed pathogen variation for virulence inhibition by jasmonate-mediated plant defenses and induction of plant defense metabolites. Comparison of the transcriptional effects of infection by two distinct B. cinerea isolates showed only minor differences in transcriptional responses of wild-type plants, but notable isolate-specific transcript differences in jasmonate-insensitive plants. These transcriptional differences suggest B. cinerea activation of plant defenses that require plant jasmonate signaling for activity in response to only one of the two B. cinerea isolates tested. Thus, similar infection phenotypes observed in wild-type plants result from different signaling interactions with the plant that are likely integrated by jasmonate signaling.
PLOS Genetics | 2010
Eva K.F. Chan; Heather C. Rowe; Bjarne Gram Hansen; Daniel J. Kliebenstein
Discovering links between the genotype of an organism and its metabolite levels can increase our understanding of metabolism, its controls, and the indirect effects of metabolism on other quantitative traits. Recent technological advances in both DNA sequencing and metabolite profiling allow the use of broad-spectrum, untargeted metabolite profiling to generate phenotypic data for genome-wide association studies that investigate quantitative genetic control of metabolism within species. We conducted a genome-wide association study of natural variation in plant metabolism using the results of untargeted metabolite analyses performed on a collection of wild Arabidopsis thaliana accessions. Testing 327 metabolites against >200,000 single nucleotide polymorphisms identified numerous genotype–metabolite associations distributed non-randomly within the genome. These clusters of genotype–metabolite associations (hotspots) included regions of the A. thaliana genome previously identified as subject to recent strong positive selection (selective sweeps) and regions showing trans-linkage to these putative sweeps, suggesting that these selective forces have impacted genome-wide control of A. thaliana metabolism. Comparing the metabolic variation detected within this collection of wild accessions to a laboratory-derived population of recombinant inbred lines (derived from two of the accessions used in this study) showed that the higher level of genetic variation present within the wild accessions did not correspond to higher variance in metabolic phenotypes, suggesting that evolutionary constraints limit metabolic variation. While a major goal of genome-wide association studies is to develop catalogues of intraspecific variation, the results of multiple independent experiments performed for this study showed that the genotype–metabolite associations identified are sensitive to environmental fluctuations. Thus, studies of intraspecific variation conducted via genome-wide association will require analyses of genotype by environment interaction. Interestingly, the network structure of metabolite linkages was also sensitive to environmental differences, suggesting that key aspects of network architecture are malleable.
PLOS ONE | 2014
Laercio R. Porto-Neto; Antonio Reverter; Kishore C. Prayaga; Eva K.F. Chan; D. J. Johnston; R. J. Hawken; Geoffrey Fordyce; José Fernando Garcia; Tad S. Sonstegard; S. Bolormaa; Michael E. Goddard; H. M. Burrow; John M. Henshall; Sigrid A. Lehnert; W. Barendse
Adaptation of global food systems to climate change is essential to feed the world. Tropical cattle production, a mainstay of profitability for farmers in the developing world, is dominated by heat, lack of water, poor quality feedstuffs, parasites, and tropical diseases. In these systems European cattle suffer significant stock loss, and the cross breeding of taurine x indicine cattle is unpredictable due to the dilution of adaptation to heat and tropical diseases. We explored the genetic architecture of ten traits of tropical cattle production using genome wide association studies of 4,662 animals varying from 0% to 100% indicine. We show that nine of the ten have genetic architectures that include genes of major effect, and in one case, a single location that accounted for more than 71% of the genetic variation. One genetic region in particular had effects on parasite resistance, yearling weight, body condition score, coat colour and penile sheath score. This region, extending 20 Mb on BTA5, appeared to be under genetic selection possibly through maintenance of haplotypes by breeders. We found that the amount of genetic variation and the genetic correlations between traits did not depend upon the degree of indicine content in the animals. Climate change is expected to expand some conditions of the tropics to more temperate environments, which may impact negatively on global livestock health and production. Our results point to several important genes that have large effects on adaptation that could be introduced into more temperate cattle without detrimental effects on productivity.
Genome Biology and Evolution | 2014
Alan G. Morris; Anja Heinze; Eva K.F. Chan; Andrew B. Smith; Vanessa M. Hayes
The oldest contemporary human mitochondrial lineages arose in Africa. The earliest divergent extant maternal offshoot, namely haplogroup L0d, is represented by click-speaking forager peoples of southern Africa. Broadly defined as Khoesan, contemporary Khoesan are today largely restricted to the semidesert regions of Namibia and Botswana, whereas archeological, historical, and genetic evidence promotes a once broader southerly dispersal of click-speaking peoples including southward migrating pastoralists and indigenous marine-foragers. No genetic data have been recovered from the indigenous peoples that once sustained life along the southern coastal waters of Africa prepastoral arrival. In this study we generate a complete mitochondrial genome from a 2,330-year-old male skeleton, confirmed through osteological and archeological analysis as practicing a marine-based forager existence. The ancient mtDNA represents a new L0d2c lineage (L0d2c1c) that is today, unlike its Khoe-language based sister-clades (L0d2c1a and L0d2c1b) most closely related to contemporary indigenous San-speakers (specifically Ju). Providing the first genomic evidence that prepastoral Southern African marine foragers carried the earliest diverged maternal modern human lineages, this study emphasizes the significance of Southern African archeological remains in defining early modern human origins.
Mammalian Genome | 2009
Mark J. Cowley; Chris Cotsapas; Rohan Williams; Eva K.F. Chan; Jeremy N. Pulvers; Michael Y. Liu; Oscar J. Luo; David J. Nott; Peter Little
Genetic variation is known to influence the amount of mRNA produced by a gene. Because molecular machines control mRNA levels of multiple genes, we expect genetic variation in components of these machines would influence multiple genes in a similar fashion. We show that this assumption is correct by using correlation of mRNA levels measured from multiple tissues in mouse strain panels to detect shared genetic influences. These correlating groups of genes (CGGs) have collective properties that on average account for 52–79% of the variability of their constituent genes and can contain genes that encode functionally related proteins. We show that the genetic influences are essentially tissue-specific and, consequently, the same genetic variations in one animal may upregulate a CGG in one tissue but downregulate the CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. Thus, this class of genetic variation can result in complex inter- and intraindividual differences. This will create substantial challenges in humans, where multiple tissues are not readily available.
Mammalian Genome | 2006
Chris Cotsapas; Rohan Williams; Jeremy N. Pulvers; David J. Nott; Eva K.F. Chan; Mark J. Cowley; Peter Little
The analysis of the influence of genetic variation on regulation of gene expression at a near-genome-wide level has become the focus of much recent interest. It is widely appreciated that many genes are expressed in a tissue-specific manner and that others are more ubiquitously expressed but relatively little is known about how genetic variation might influence these tissue patterns of gene expression. In this review we discuss what is known about the tissue specificity of the influence of genetic variation and review the challenges that we face in combining hugely parallel, microarray-based gene analysis with equally expensive genetic analysis. We conclude that the available data suggest that genetic variation is essentially tissue specific in its effects upon gene expression and this has important implications for experimental analysis.
PLOS ONE | 2015
Eva K.F. Chan; Rae-Anne Hardie; Desiree C. Petersen; Karen Beeson; Riana Bornman; Andrew B. Smith; Vanessa M. Hayes
The oldest extant human maternal lineages include mitochondrial haplogroups L0d and L0k found in the southern African click-speaking forager peoples broadly classified as Khoesan. Profiling these early mitochondrial lineages allows for better understanding of modern human evolution. In this study, we profile 77 new early-diverged complete mitochondrial genomes and sub-classify another 105 L0d/L0k individuals from southern Africa. We use this data to refine basal phylogenetic divergence, coalescence times and Khoesan prehistory. Our results confirm L0d as the earliest diverged lineage (∼172 kya, 95%CI: 149–199 kya), followed by L0k (∼159 kya, 95%CI: 136–183 kya) and a new lineage we name L0g (∼94 kya, 95%CI: 72–116 kya). We identify two new L0d1 subclades we name L0d1d and L0d1c4/L0d1e, and estimate L0d2 and L0d1 divergence at ∼93 kya (95%CI:76–112 kya). We concur the earliest emerging L0d1’2 sublineage L0d1b (∼49 kya, 95%CI:37–58 kya) is widely distributed across southern Africa. Concomitantly, we find the most recent sublineage L0d2a (∼17 kya, 95%CI:10–27 kya) to be equally common. While we agree that lineages L0d1c and L0k1a are restricted to contemporary inland Khoesan populations, our observed predominance of L0d2a and L0d1a in non-Khoesan populations suggests a once independent coastal Khoesan prehistory. The distribution of early-diverged human maternal lineages within contemporary southern Africans suggests a rich history of human existence prior to any archaeological evidence of migration into the region. For the first time, we provide a genetic-based evidence for significant modern human evolution in southern Africa at the time of the Last Glacial Maximum at between ∼21–17 kya, coinciding with the emergence of major lineages L0d1a, L0d2b, L0d2d and L0d2a.
Oncotarget | 2017
Weerachai Jaratlerdsiri; Eva K.F. Chan; Desiree C. Petersen; Claire Yang; Peter I. Croucher; M.S. Riana Bornman; Palak Sheth; Vanessa M. Hayes
Complex genomic rearrangements are common molecular events driving prostate carcinogenesis. Clinical significance, however, has yet to be fully elucidated. Detecting the full range and subtypes of large structural variants (SVs), greater than one kilobase in length, is challenging using clinically feasible next generation sequencing (NGS) technologies. Next generation mapping (NGM) is a new technology that allows for the interrogation of megabase length DNA molecules outside the detection range of single-base resolution NGS. In this study, we sought to determine the feasibility of using the Irys (Bionano Genomics Inc.) nanochannel NGM technology to generate whole genome maps of a primary prostate tumor and matched blood from a Gleason score 7 (4 + 3), ETS-fusion negative prostate cancer patient. With an effective mapped coverage of 35X and sequence coverage of 60X, and an estimated 43% tumor purity, we identified 85 large somatic structural rearrangements and 6,172 smaller somatic variants, respectively. The vast majority of the large SVs (89%), of which 73% are insertions, were not detectable ab initio using high-coverage short-read NGS. However, guided manual inspection of single NGS reads and de novo assembled scaffolds of NGM-derived candidate regions allowed for confirmation of 94% of these large SVs, with over a third impacting genes with oncogenic potential. From this single-patient study, the first cancer study to integrate NGS and NGM data, we hypothesise that there exists a novel spectrum of large genomic rearrangements in prostate cancer, that these large genomic rearrangements are likely early events in tumorigenesis, and they have potential to enhance taxonomy.