Eva Koziolová
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva Koziolová.
Macromolecular Bioscience | 2015
Petr Chytil; Eva Koziolová; Olga Janoušková; Libor Kostka; Karel Ulbrich; Tomáš Etrych
High-molecular-weight star polymer drug nanocarriers intended for the treatment and/or visualisation of solid tumours were synthesised, and their physico-chemical and preliminary in vitro biological properties were determined. The water-soluble star polymer carriers were prepared by the grafting of poly(amido amine) (PAMAM) dendrimers by hetero-telechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, synthesised by the controlled radical Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation. The well-defined star copolymers with Mw values ranging from 2 · 10(5) to 6 · 10(5) showing a low dispersity (approximately 1.2) were prepared in a high yield. A model anticancer drug, doxorubicin, was bound to the star polymer through a hydrazone bond, enabling the pH-controlled drug release in the target tumour tissue. The activated polymer arm ends of the star copolymer carrier enable a one-point attachment for the targeting ligands and/or a labelling moiety. In this study, the model TAMRA fluorescent dye was used to prove the feasibility of the polymer carrier visualisation by optical imaging in vitro. The tailor-made structure of the star polymer carriers should facilitate the synthesis of targeted polymer-drug conjugates, even polymer theranostics, for simultaneous tumour drug delivery and imaging.
European Journal of Pharmaceutics and Biopharmaceutics | 2015
Hideaki Nakamura; Eva Koziolová; Tomáš Etrych; Petr Chytil; Jun Fang; Karel Ulbrich; Hiroshi Maeda
Previously we showed that linear poly(N-(2-hydroxypropyl)methacrylamide) conjugates of pirarubicin (THP), LP-THP, with MW about 39 kDa, exhibited far better tumor accumulation and therapeutic effect than that of parental free THP. To improve the pharmacokinetics of LP-THP further, high-MW conjugate of poly(amido amine) (PAMAM) dendrimer grafted with semitelechelic HPMA copolymer (PHPMA) was synthesized [star polymer (SP); 400 kDa] and conjugated with THP via hydrazone bond-containing spacer (SP-THP). THP was conjugated to SP to form SP-THP via acid cleavable hydrazone bonding, which responds to acidic milieu of tumor tissue. As a consequence, it would release free THP, by active therapeutic principle. SP-THP exhibits larger hydrodynamic diameter (25.9 nm) in aqueous solution than that of LP-THP (8.2 nm) as observed by light scattering and size exclusion chromatography. Because of the larger size, the tumor AUC5h-72 h of SP-THP was 3.3 times higher than that of LP-THP. More importantly, released free THP was retained selectively in the tumor tissue for at least up to 72 h after administration of SP-THP. We found that SP-THP exhibited superior antitumor effect to LP-THP against both S-180 tumor-bearing mice in vivo, and with chemically AOM/DSS-induced colon tumor-bearing mice, most probably due to their different molecular size. In our comparison study of in vitro and in vivo behavior of SP-THP and LP-THP we concluded that SP-THP exhibited enhanced therapeutic efficacy not only in implanted tumor but also in orthotopic/spontaneous tumor despite its higher toxicity compared to LP-THP. Upon these findings further investigation using various tumors including transgenic, and metastatic tumors is going to be conducted soon.
Journal of Controlled Release | 2016
Eva Koziolová; Olga Janoušková; Lucie Cuchalová; Zuzana Hvězdová; Jan Hraběta; Tomas Eckschlager; Ladislav Sivák; Karel Ulbrich; Tomáš Etrych; Vladimir Subr
Water-soluble N-(2-hydroxypropyl)methacrylamide copolymer conjugates bearing the anticancer drugs doxorubicin (Dox) or pirarubicin (THP), P-gp inhibitors derived from reversin 121 (REV) or ritonavir (RIT)), or both anticancer drug and P-gp inhibitor were designed and synthesized. All biologically active molecules were attached to the polymer carrier via pH-sensitive spacer enabling controlled release in mild acidic environment modeling endosomes and lysosomes of tumor cells. The cytotoxicity of the conjugates against three sensitive and Dox-resistant neuroblastoma (NB) cell lines, applied alone or in combination, was studied in vitro. All conjugates containing THP displayed higher cytotoxicity against all three Dox-resistant NB cell lines compared with the corresponding Dox-containing conjugates. Furthermore, the cytotoxicity of conjugates containing both drug and P-gp inhibitor was up to 10 times higher than that of the conjugate containing only drug. In general, the polymer-drug conjugates showed higher cytotoxicity when conjugates containing inhibitors were added 8 or 16h prior to treatment compared with conjugates bearing both the inhibitor and the drug. The difference in cytotoxicity was more pronounced at the 16-h time point. Moreover, higher inhibitor:drug ratios resulted in higher cytotoxicity. The cytotoxicity of the polymer-drug used in combination with polymer P-gp inhibitor was up to 84 times higher than that of the polymer-drug alone.
Biomacromolecules | 2014
Vladimir Subr; L. Sivák; Eva Koziolová; Alena Braunová; Michal Pechar; J. Strohalm; Martina Kabesova; B. Říhová; Karel Ulbrich; Marek Kovář
The effects of novel polymeric therapeutics based on water-soluble N-(2-hydroxypropyl)methacrylamide copolymers (P(HPMA)) bearing the anticancer drug doxorubicin (Dox), an inhibitor of ABC transporters, or both, on the viability and the proliferation of the murine monocytic leukemia cell line P388 (parental cell line) and its doxorubicin-resistant subline P388/MDR were studied in vitro. The inhibitor derivatives 5-methyl-4-oxohexanoyl reversin 121 (MeOHe-R121) and 5-methyl-4-oxohexanoyl ritonavir ester (MeOHe-RIT), showing the highest inhibitory activities, were conjugated to the P(HPMA) via the biodegradable pH-sensitive hydrazone bond, and the ability of these conjugates to block the ATP driven P-glycoprotein (P-gp) efflux pump was tested. The P(HPMA) conjugate P-Ahx-NH-N═MeOHe-R121 showed a dose-dependent increase in the ability to sensitize the P388/MDR cells to Dox from 1.5 to 24 μM, and achieved an approximately 50-fold increase in sensitization at 24 μM. The P(HPMA) conjugate P-Ahx-NH-N═MeOHe-RIT showed moderate activity at 6 μM (∼10 times higher sensitization) and increased sensitization by 50-fold at 12 μM. The cytostatic activity of the P(HPMA) conjugate P-Ahx-NH-N═MeOHe-R121(Dox) containing Dox and the P-gp inhibitor MeOHe-R121, both bound via hydrazone bonds to the P(HPMA) carrier, was almost 30 times higher than that of the conjugate P-Ahx-NH-N═Dox toward the P388/MDR cells in vitro. A similar result was observed for P-Ahx-NH-N═MeOHe-RIT(Dox), which exhibited almost 10 times higher cytostatic activity than P-Ahx-NH-N═Dox.
Macromolecular Bioscience | 2018
Petr Chytil; Eva Koziolová; Tomáš Etrych; Karel Ulbrich
Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity.
Anti-Cancer Drugs | 2017
Eva Koziolová; Petr Chytil; Tomáš Etrych; Olga Janoušková
Polymer prodrugs can considerably improve the treatment of tumors with multidrug resistance, often caused by overexpression of P-glycoprotein (P-gp). Here, we present the effect of the N-(2-hydroxypropyl) methacrylamide-based polymer conjugate with P-gp inhibitor ritonavir (RIT) on the increase of free doxorubicin (DOX) and polymer-bound DOX cytotoxicity in the human neuroblastoma 4 cell line and its resistant clones to different cytostatics. The increase in cytotoxicity after polymer–RIT conjugate pretreatment was higher for the lines overexpressing P-gp and less pronounced for those with decreased P-gp levels. Moreover, the effect of polymer conjugate containing inhibitor and DOX on the same polymer chain was lower than that of two individual polymer conjugates used sequentially. In conclusion, the polymer–RIT conjugate can significantly increase the cytotoxicity of free DOX and polymer–DOX conjugates in cells with various multidrug resistance origins and can thus be considered a suitable therapeutic enhancer of polymer prodrugs.
European Journal of Pharmaceutics and Biopharmaceutics | 2018
Daniela Machová; Eva Koziolová; Petr Chytil; Kristýna Venclíková; Tomáš Etrych; Olga Janoušková
Graphical abstract Figure. No caption available. ABSTRACT Ritonavir (RIT) is a widely used antiviral drug that acts as an HIV protease inhibitor with emerging potential in anticancer therapies. RIT causes inhibition of P‐glycoprotein, which plays an important role in multidrug resistance (MDR) in cancer cells when overexpressed. Moreover, RIT causes mitochondrial dysfunction, leading to decreased ATP production and reduction of caveolin I expression, which can affect cell migration and tumor progression. To increase its direct antitumor activity, decrease severe side effects induced by the use of free RIT and improve its pharmacokinetics, ritonavir 5‐methyl‐4‐oxohexanoate (RTV) was synthesized and conjugated to a tumor‐targeted polymer carrier based on a N‐(2‐hydroxypropyl)methacrylamide (HPMA) copolymer. Here we demonstrated that polymer‐bound RTV enhanced the internalization of polymer‐RTV conjugates, differing in RTV content from 4 to 15 wt%, in HeLa cancer cells compared with polymer without RTV. The most efficient influx and internalization properties were determined for the polymer conjugate bearing 11 wt% of RTV. This conjugate was internalized by cells using both caveolin‐ and clathrin‐dependent endocytic pathways in contrast to the RTV‐free polymer, which was preferentially internalized only by clathrin‐mediated endocytosis. Moreover, we found the co‐localization of the RTV‐conjugate with mitochondria and a significant decrease of ATP production in treated cells. Thus, the impact on mitochondrial mechanism can influence the function of ATP‐dependent P‐glycoprotein and also the cell viability of MDR cancer cells. Overall, this study demonstrated that the polymer‐RTV conjugate is a promising polymer‐based nanotherapeutic, suitable for antitumor combination therapy with other anticancer drugs and a potential mitochondrial drug delivery system.
Biomacromolecules | 2018
Eva Koziolová; Libor Kostka; Lenka Kotrchová; Vladimir Subr; Rafal Konefal; Benjamin Nottelet; Tomáš Etrych
We developed a new simplified method for the synthesis of well-defined linear, diblock, or starlike N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer drug carriers using controlled reversible addition-fragmentation chain transfer polymerization. The prepared monodispersed polymers are after the drug attachment intended for enhanced anticancer therapy. This new approach significantly reduces the number of required synthetic steps and minimizes the consumption of organic solvents during the synthesis. As a result, highly defined linear, diblock, and starlike copolymers designed for pH-triggered drug activation/release in tumor tissue were formed in sufficient amounts for further physicochemical and biological studies. Within the synthesis, we also developed a new procedure for the selective deprotection of tert-butoxycarbonyl hydrazide and amine groups on hydrophilic HPMA copolymers, including the one-pot removal of polymer end groups. We studied and described in detail the kinetics and efficacy of the deprotection reaction. We believe the simplified synthetic approach facilitates the preparation of polymer conjugates bound by the pH-sensitive hydrazone bond and their application in tumor treatment.
Molecular Pharmaceutics | 2016
Hideaki Nakamura; Eva Koziolová; Petr Chytil; Kenji Tsukigawa; Jun Fang; Mamoru Haratake; Karel Ulbrich; Tomáš Etrych; Hiroshi Maeda
Nanoscale | 2017
Eva Koziolová; Shreya Goel; Petr Chytil; Olga Janoušková; Todd E. Barnhart; Weibo Cai; Tomáš Etrych