Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva L. Feldman is active.

Publication


Featured researches published by Eva L. Feldman.


Diabetes Care | 2010

Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments

Solomon Tesfaye; Andrew J.M. Boulton; Peter James Dyck; Roy Freeman; Michael Horowitz; P. Kempler; Giuseppe Lauria; Rayaz Malik; Vincenza Spallone; Aaron I. Vinik; Luciano Bernardi; Paul Valensi; James W. Albers; Gérard Amarenco; Henning Anderson; Joe Arezzo; M. Backonja; Geert Jan Biessels; Vera Bril; Norman E. Cameron; Mary A. Cotter; John D. England; Eva L. Feldman; Simona Frontoni; Jannik Hilsted; Philip Low; Rayaz A. Malik; Peter C. O'Brien; Rodica Pop-Busui; Bruce A. Perkins

Preceding the joint meeting of the 19th annual Diabetic Neuropathy Study Group of the European Association for the Study of Diabetes (NEURODIAB) and the 8th International Symposium on Diabetic Neuropathy in Toronto, Canada, 13–18 October 2009, expert panels were convened to provide updates on classification, definitions, diagnostic criteria, and treatments of diabetic peripheral neuropathies (DPNs), autonomic neuropathy, painful DPNs, and structural alterations in DPNs.


Diabetes Care | 1994

A Practical Two-Step Quantitative Clinical and Electrophysiological Assessment for the Diagnosis and Staging of Diabetic Neuropathy

Eva L. Feldman; M. J. Stevens; P. K. Thomas; Morton B. Brown; Nicola Canal; Douglas A. Greene

OBJECTIVE Early diagnosis of distal symmetric sensorimotor polyneuropathy, a common complication of diabetes, may decrease patient morbidity by allowing for potential therapeutic interventions. We have designed an outpatient program to facilitate diagnosis of diabetic neuropathy. RESEARCH DESIGN AND METHODS Patients are initially administered a brief questionnaire and screening examination, designated the Michigan Neuropathy Screening Instrument (MNSI). Diabetic neuropathy is confirmed in patients with a positive assessment by a quantitative neurological examination coupled with nerve conduction studies, designated the Michigan Diabetic Neuropathy Score (MDNS). In this study, 56 outpatients with confirmed type I or II diabetes were administered the standardized quantitative components required to diagnose and stage diabetic neuropathy according to the San Antonio Consensus Statement (1) and the Mayo Clinic protocol (2). These same patients were then assessed with the MNSI and the MDNS. RESULTS Of 29 patients with a clinical MNSI score > 2, 28 had neuropathy. Twenty-eight patients with an MDNS of ≥ 7 had neuropathy, while 21 non-neuropathic patients had a score ≤ 6. Of 35 patients with diabetic neuropathy, 34 had ≥ 2 abnormal nerve conductions. Twenty-one normal patients and one patient with neuropathy had ≤ 1 abnormal nerve conduction. CONCLUSIONS The results indicate that the MNSI is a good screening tool for diabetic neuropathy and that the MDNS coupled with nerve conductions provides a simple means to confirm this diagnosis.


Lancet Neurology | 2012

Diabetic neuropathy: Clinical manifestations and current treatments

Brian C. Callaghan; Hsinlin T. Cheng; Catherine L. Stables; Andrea L. Smith; Eva L. Feldman

Diabetic peripheral neuropathy is a prevalent, disabling disorder. The most common manifestation is distal symmetrical polyneuropathy (DSP), but many patterns of nerve injury can occur. Currently, the only effective treatments are glucose control and pain management. While glucose control substantially decreases the development of neuropathy in those with type 1 diabetes, the effect is probably much smaller in those with type 2 diabetes. Evidence supports the use of specific anticonvulsants and antidepressants for pain management in patients with diabetic peripheral neuropathy. However, the lack of disease-modifying therapies for diabetic DSP makes the identification of new modifiable risk factors essential. Growing evidence supports an association between components of the metabolic syndrome, including prediabetes, and neuropathy. Studies are needed to further explore this association, which has implications for the development of new treatments for this common disorder.


The FASEB Journal | 2002

High glucose-induced oxidative stress and mitochondrial dysfunction in neurons

James W. Russell; David Golovoy; Andrea M. Vincent; Pia Mahendru; James A. Olzmann; Alice Mentzer; Eva L. Feldman

The current study examines the association between glucose induction of reactive oxygen species (ROS), mitochondrial (Mt) depolarization, and programmed cell death in primary neurons. In primary dorsal root ganglion (DRG) neurons, 45 mM glucose rapidly induces a peak rise in ROS Corresponding to a 50% increase in mean Mt size at 6 h (P<0.001). This is coupled with loss of regulation of the Mt membrane potential (Mt membrane hyperpolarization, followed by depolarization, MMD), partial depletion of ATP, and activation of caspase‐3 and ‐9. Glucose‐induced activation of ROS, MMD, and caspase‐3 and ‐9 activation is inhibited by myxothiazole and thenoyltrifluoroacetone (P<0.001), which inhibit specific components of the Mt electron transfer chain. Similarly, MMD and caspase‐3 activation are inhibited by 100 fM bongkrekic acid (an inhibitor of the adenosine nucleotide translocase ANT). These results indicate that mild increases in glucose induce ROS and Mt swelling that precedes neuronal apoptosis. Glucotoxicity is blocked by inhibiting ROS induction, MMD, or caspase cleavage by specific inhibitors of electron transfer, or by stabilizing the ANT.—Russell, J. W., Golovoy, D., Vincent, A. M., Mahendru, P., Olzmann, J. A., Mentzer, A., Feldman, E. L. High glucose‐induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 16, 1738–1748 (2002)


Neurology | 2011

Evidence-based guideline: Treatment of painful diabetic neuropathy: Report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation

Vera Bril; John D. England; Gary M. Franklin; Misha-Miroslav Backonja; Jeffrey A. Cohen; David R. Del Toro; Eva L. Feldman; Donald J. Iverson; Bruce A. Perkins; James W. Russell; Douglas W. Zochodne

Objective: To develop a scientifically sound and clinically relevant evidence-based guideline for the treatment of painful diabetic neuropathy (PDN). Methods: We performed a systematic review of the literature from 1960 to August 2008 and classified the studies according to the American Academy of Neurology classification of evidence scheme for a therapeutic article, and recommendations were linked to the strength of the evidence. The basic question asked was: “What is the efficacy of a given treatment (pharmacologic: anticonvulsants, antidepressants, opioids, others; and nonpharmacologic: electrical stimulation, magnetic field treatment, low-intensity laser treatment, Reiki massage, others) to reduce pain and improve physical function and quality of life (QOL) in patients with PDN?” Results and Recommendations: Pregabalin is established as effective and should be offered for relief of PDN (Level A). Venlafaxine, duloxetine, amitriptyline, gabapentin, valproate, opioids (morphine sulfate, tramadol, and oxycodone controlled-release), and capsaicin are probably effective and should be considered for treatment of PDN (Level B). Other treatments have less robust evidence or the evidence is negative. Effective treatments for PDN are available, but many have side effects that limit their usefulness, and few studies have sufficient information on treatment effects on function and QOL.


Growth Hormone & Igf Research | 2002

Control of cell survival by IGF signaling pathways.

Andrea M. Vincent; Eva L. Feldman

The insulin-like growth factor system efficiently signals to cells to grow, differentiate, and survive. One central player in the prevention of cell death is the IGF-I receptor. Transduction of signals through this receptor leads to multiple series of intracellular phosphorylation events and the activation of several signaling pathways. Mechanisms of IGF system signaling that prevent cell death continue to be identified, suggesting that cells have alternative ways to avert death signals in addition to primary protective pathways. This review describes current knowledge of the mechanisms utilized by the IGF system to promote cell survival.


Diabetes Care | 1992

Complications: Neuropathy, Pathogenetic Considerations

Douglas A. Greene; Anders A. F. Sima; Martin J. Stevens; Eva L. Feldman; S. A. Lattimer

The most common form of neuropathy associated with diabetes mellitus is distal symmetric sensorimotor polyneuropathy, often accompanied by autonomic neuropathy. This disorder is characterized by striking atrophy and loss of myelinated and unmyelinated fibers accompanied by Wallerian degeneration, segmental, and paranodal demyelination and blunted nerve fiber regeneration. In both humans and laboratory animals, this progressive nerve fiber damage and loss parallels the degree and/or duration of hyperglycemia. Several metabolic mechanisms have been proposed to explain the relationship between the extent and severity of hyperglycemia and the development of diabetic neuropathy. One mechanism, activation of the polyol pathway by glucose via AR, is a prominent metabolic feature of diabetic rat peripheral nerve, where it promotes sorbitol and fructose accumulation, myo-inositol depletion, and slowing of nerve conduction by alteration of neural Na+-K+-ATPase activity or perturbation of normal physiological osmoregulatory mechanisms. ARIs, which normalize nerve myo-inositol and nerve conduction slowing, are currently the focus of clinical trials. Other specific metabolic abnormalities that may play a role in the pathogenesis of diabetic neuropathy include abnormal lipid or amino acid metabolism, superoxide radical formation, protein glycation, or potential blunting of normal neurotrophic responses. Metabolic dysfunction in diabetic nerve is accompanied by vascular insufficiency and nerve hypoxia that may contribute to nerve fiber loss and damage. Although major questions about the pathogenesis of diabetic neuropathy remain unanswered and require further intense investigation, significant recent progress is pushing us into the future and likely constitutes only the first of many therapies directed against one or more elements of the complex pathogenetic process responsible for diabetic neuropathy.


Nature Reviews Neurology | 2011

Diabetic neuropathy: cellular mechanisms as therapeutic targets.

Andrea M. Vincent; Brian C. Callaghan; Andrea L. Smith; Eva L. Feldman

In patients with diabetes, nerve injury is a common complication that leads to chronic pain, numbness and substantial loss of quality of life. Good glycemic control can decrease the incidence of diabetic neuropathy, but more than half of all patients with diabetes still develop this complication. There is no approved treatment to prevent or halt diabetic neuropathy, and only symptomatic pain therapies, with variable efficacy, are available. New insights into the mechanisms leading to the development of diabetic neuropathy continue to point to systemic and cellular imbalances in metabolites of glucose and lipids. In the PNS, sensory neurons, Schwann cells and the microvascular endothelium are vulnerable to oxidative and inflammatory stress in the presence of these altered metabolic substrates. This Review discusses the emerging cellular mechanisms that are activated in the diabetic milieu of hyperglycemia, dyslipidemia and impaired insulin signaling. We highlight the pathways to cellular injury, thereby identifying promising therapeutic targets, including mitochondrial function and inflammation.


The FASEB Journal | 2005

Short-term hyperglycemia produces oxidative damage and apoptosis in neurons

Andrea M. Vincent; Lisa L. McLean; Carey Backus; Eva L. Feldman

Dorsal root ganglia neurons in culture die through programmed cell death when exposed to elevated glucose, providing an in vitro model system for the investigation of the mechanisms leading to diabetic neuropathy. This study examines the time course of programmed cell death induction, regulation of cellular antioxidant capacity, and the protective effects of antioxidants in neurons exposed to hyperglycemia. We demonstrate that the first 2 h of hyperglycemia are sufficient to induce oxidative stress and programmed cell death. Using fluorimetric analysis of reactive oxygen species (ROS) production, in vitro assays of antioxidant enzymes, and immunocytochemical assays of cell death, we demonstrate superoxide formation, inhibition of aconitase, and lipid peroxidation within 1 h of hyperglycemia. These are followed by caspase‐3 activation and DNA fragmentation. Antioxidant potential increases by 3–6 h but is insufficient to protect these neurons. Application of the antioxidant α‐lipoic acid potently prevents glucose‐induced oxidative stress and cell death. This study identifies cellular therapeutic targets to prevent diabetic neuropathy. Since oxidative stress is a common feature of the micro‐ and macrovascular complications of diabetes, the present findings have broad application to the treatment of diabetic patients.


Journal of Clinical Investigation | 2003

Oxidative stress and diabetic neuropathy: a new understanding of an old problem

Eva L. Feldman

Diabetes has reached epidemic proportions in the Western world. In the United States, 17 million individuals have diabetes, greater than 6% of the population (1). The morbidity and mortality of diabetes is due to the development of both macrovascular and microvascular complications (2). Macrovascular complications including myocardial infarction, stroke, and large vessel peripheral vascular disease are 2 to 4 times more prevalent in individuals with diabetes. The underlying common factor in macrovascular complications is the ability of the diabetic condition to accelerate atherogenesis. Atherogenesis is a multifactorial response of vessels to injury; both insulin resistance and elevated lipid levels, common in diabetes, are primary triggers of atherogenic injury (3). The endothelium in diabetic arteries is also more prone to atherogenic injury, likely due to decreased production of endothelial nitric oxide, known to be antiatherogenic, and increased production of plasminogen activator inhibitor-1 (PAI-1) (4). While macro-vascular complications are common among diabetics, diabetes-specific microvascular complications will eventually affect nearly all individuals with diabetes. Diabetic retinopathy is the most common cause of adult blindness in the United States. Ninety percent of diabetics present evidence of retinopathy within 15 years of disease onset and approximately 25,000 new cases of diabetes-related blindness are reported per year (5). Diabetes is also the leading cause of renal failure in the United States, accounting for 40% of new cases each year (6). Greater than half of all patients with diabetes develop neuropathy, a progressive deterioration of nerves resulting in peripheral and autonomic nerve dysfunction. As a result, diabetic neuropathy is the most common cause of nontraumatic amputations and autonomic failure (7, 8). In his or her lifetime, a diabetic patient with neuropathy has a 15% chance of undergoing one or more amputations (9).

Collaboration


Dive into the Eva L. Feldman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhumsoo Kim

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junguk Hur

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge