Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Loth is active.

Publication


Featured researches published by Eva Loth.


Nature Genetics | 2012

Identification of common variants associated with human hippocampal and intracranial volumes

Jason L. Stein; Sarah E. Medland; A A Vasquez; Derrek P. Hibar; R. E. Senstad; Anderson M. Winkler; Roberto Toro; K Appel; R. Bartecek; Ørjan Bergmann; Manon Bernard; Andrew Anand Brown; Dara M. Cannon; M. Mallar Chakravarty; Andrea Christoforou; M. Domin; Oliver Grimm; Marisa Hollinshead; Avram J. Holmes; Georg Homuth; J.J. Hottenga; Camilla Langan; Lorna M. Lopez; Narelle K. Hansell; Kristy Hwang; Sungeun Kim; Gonzalo Laje; Phil H. Lee; Xinmin Liu; Eva Loth

Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimers disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).


Nature Neuroscience | 2012

Adolescent impulsivity phenotypes characterized by distinct brain networks

Robert Whelan; Patricia J. Conrod; Jean-Baptiste Poline; Anbarasu Lourdusamy; Tobias Banaschewski; Gareth J. Barker; Mark A. Bellgrove; Christian Büchel; Mark Byrne; Tarrant D.R. Cummins; Mira Fauth-Bühler; Herta Flor; Jürgen Gallinat; Andreas Heinz; Bernd Ittermann; Karl Mann; Jean-Luc Martinot; Edmund C. Lalor; Mark Lathrop; Eva Loth; Frauke Nees; Tomáš Paus; Marcella Rietschel; Michael N. Smolka; Rainer Spanagel; David N. Stephens; Maren Struve; Benjamin Thyreau; Sabine Vollstaedt-Klein; Trevor W. Robbins

The impulsive behavior that is often characteristic of adolescence may reflect underlying neurodevelopmental processes. Moreover, impulsivity is a multi-dimensional construct, and it is plausible that distinct brain networks contribute to its different cognitive, clinical and behavioral aspects. As these networks have not yet been described, we identified distinct cortical and subcortical networks underlying successful inhibitions and inhibition failures in a large sample (n = 1,896) of 14-year-old adolescents. Different networks were associated with drug use (n = 1,593) and attention-deficit hyperactivity disorder symptoms (n = 342). Hypofunctioning of a specific orbitofrontal cortical network was associated with likelihood of initiating drug use in early adolescence. Right inferior frontal activity was related to the speed of the inhibition process (n = 826) and use of illegal substances and associated with genetic variation in a norepinephrine transporter gene (n = 819). Our results indicate that both neural endophenotypes and genetic variation give rise to the various manifestations of impulsive behavior.


American Journal of Psychiatry | 2011

Lower Ventral Striatal Activation During Reward Anticipation in Adolescent Smokers

Jan Peters; Uli Bromberg; Sophia Schneider; Stefanie Brassen; Mareike M. Menz; Tobias Banaschewski; Patricia J. Conrod; Herta Flor; Jürgen Gallinat; Hugh Garavan; Andreas Heinz; Bernd Itterman; Mark Lathrop; Jean-Luc Martinot; Tomáš Paus; Jean-Baptiste Poline; Trevor W. Robbins; Marcella Rietschel; Michael N. Smolka; Andreas Ströhle; Maren Struve; Eva Loth; Gunter Schumann; Christian Büchel

OBJECTIVE Adolescents are particularly vulnerable to addiction, and in the case of smoking, this often leads to long-lasting nicotine dependence. The authors investigated a possible neural mechanism underlying this vulnerability. METHOD Functional MRI was performed during reward anticipation in 43 adolescent smokers and 43 subjects matched on age, gender, and IQ. The authors also assessed group differences in novelty seeking, impulsivity, and reward delay discounting. RESULTS In relation to the comparison subjects, the adolescent smokers showed greater reward delay discounting and higher scores for novelty seeking. Neural responses in the ventral striatum during reward anticipation were significantly lower in the smokers than in the comparison subjects, and in the smokers this response was correlated with smoking frequency. Notably, the lower response to reward anticipation in the ventral striatum was also observed in smokers (N=14) who had smoked on fewer than 10 occasions. CONCLUSIONS The present findings suggest that a lower response to reward anticipation in the ventral striatum may be a vulnerability factor for the development of early nicotine use.


American Journal of Psychiatry | 2012

Risk Taking and the Adolescent Reward System: A Potential Common Link to Substance Abuse

Sophia Schneider; Jan Peters; Uli Bromberg; Stefanie Brassen; Stephan F. Miedl; Tobias Banaschewski; Gareth J. Barker; Patricia J. Conrod; Herta Flor; Hugh Garavan; Andreas Heinz; Bernd Ittermann; Mark Lathrop; Eva Loth; Karl Mann; Jean-Luc Martinot; Frauke Nees; Tomáš Paus; Marcella Rietschel; Trevor W. Robbins; Michael N. Smolka; Rainer Spanagel; Andreas Ströhle; Maren Struve; Gunter Schumann; Christian Büchel

OBJECTIVE Increased risk-taking behavior has been associated with addiction, a disorder also linked to abnormalities in reward processing. Specifically, an attenuated response of reward-related areas (e.g., the ventral striatum) to nondrug reward cues has been reported in addiction. One unanswered question is whether risk-taking preference is associated with striatal reward processing in the absence of substance abuse. METHOD Functional and structural MRI was performed in 266 healthy young adolescents and in 31 adolescents reporting potentially problematic substance use. Activation during reward anticipation (using the monetary incentive delay task) and to gray matter density were measured. Risk-taking bias was assessed by the Cambridge Gamble Task. RESULTS With increasing risk-taking bias, the ventral striatum showed decreased activation bilaterally during reward anticipation. Voxel-based morphometry showed that greater risk-taking bias was also associated with and partially mediated by lower gray matter density in the same structure. The decreased activation was also observed when participants with virtually any substance use were excluded. The group with potentially problematic substance use showed greater risk taking as well as lower striatal activation relative to matched comparison subjects from the main sample. CONCLUSIONS Risk taking and functional and structural properties of the reward system in adolescents are strongly linked prior to a possible onset of substance abuse, emphasizing their potential role in the predisposition to drug abuse.


Neuropsychopharmacology | 2012

Determinants of Early Alcohol Use In Healthy Adolescents: The Differential Contribution of Neuroimaging and Psychological Factors

Frauke Nees; Jelka Tzschoppe; Christopher J. Patrick; Sabine Vollstädt-Klein; Sabina Steiner; Luise Poustka; Tobias Banaschewski; Gareth J. Barker; Christian Büchel; Patricia J. Conrod; Hugh Garavan; Andreas Heinz; Jürgen Gallinat; Mark Lathrop; Karl Mann; Eric Artiges; Tomáš Paus; Jean-Baptiste Poline; Trevor W. Robbins; Marcella Rietschel; Michael N. Smolka; Rainer Spanagel; Maren Struve; Eva Loth; Gunter Schumann; Herta Flor

Individual variation in reward sensitivity may have an important role in early substance use and subsequent development of substance abuse. This may be especially important during adolescence, a transition period marked by approach behavior and a propensity toward risk taking, novelty seeking and alteration of the social landscape. However, little is known about the relative contribution of personality, behavior, and brain responses for prediction of alcohol use in adolescents. In this study, we applied factor analyses and structural equation modeling to reward-related brain responses assessed by functional magnetic resonance imaging during a monetary incentive delay task. In addition, novelty seeking, sensation seeking, impulsivity, extraversion, and behavioral measures of risk taking were entered as predictors of early onset of drinking in a sample of 14-year-old healthy adolescents (N=324). Reward-associated behavior, personality, and brain responses all contributed to alcohol intake with personality explaining a higher proportion of the variance than behavior and brain responses. When only the ventral striatum was used, a small non-significant contribution to the prediction of early alcohol use was found. These data suggest that the role of reward-related brain activation may be more important in addiction than initiation of early drinking, where personality traits and reward-related behaviors were more significant. With up to 26% of explained variance, the interrelation of reward-related personality traits, behavior, and neural response patterns may convey risk for later alcohol abuse in adolescence, and thus may be identified as a vulnerability factor for the development of substance use disorders.


Psychological Medicine | 2009

Brain morphometry volume in autistic spectrum disorder: A magnetic resonance imaging study of adults

Brian Hallahan; Eileen Daly; Grainne M. McAlonan; Eva Loth; Fiona Toal; F. O'Brien; D. Robertson; S. Hales; Clodagh Murphy; Kieran C. Murphy; Declan Murphy

BACKGROUND Several prior reports have found that some young children with autism spectrum disorder [ASD; including autism and Aspergers syndrome and pervasive developmental disorder - not otherwise specified (PDD-NOS)] have a significant increase in head size and brain weight. However, the findings from older children and adults with ASD are inconsistent. This may reflect the relatively small sample sizes that were studied, clinical heterogeneity, or age-related brain differences. METHOD Hence, we measured head size (intracranial volume), and the bulk volume of ventricular and peripheral cerebrospinal fluid (CSF), lobar brain, and cerebellum in 114 people with ASD and 60 controls aged between 18 and 58 years. The ASD sample included 80 people with Aspergers syndrome, 28 with autism and six with PDD-NOS. RESULTS There was no significant between-group difference in head and/or lobar brain matter volume. However, compared with controls, each ASD subgroup had a significantly smaller cerebellar volume, and a significantly larger volume of peripheral CSF. CONCLUSIONS Within ASD adults, the bulk volume of cerebellum is reduced irrespective of diagnostic subcategory. Also the significant increase in peripheral CSF may reflect differences in cortical maturation and/or ageing.


Proceedings of the National Academy of Sciences of the United States of America | 2012

RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release

David Stacey; Ainhoa Bilbao; Matthieu Maroteaux; Tianye Jia; Alanna C. Easton; Sophie Longueville; Charlotte Nymberg; Tobias Banaschewski; Gareth J. Barker; Christian Büchel; Fabiana Carvalho; Patricia J. Conrod; Sylvane Desrivières; Mira Fauth-Bühler; Alberto Fernández-Medarde; Herta Flor; Jürgen Gallinat; Hugh Garavan; Arun L.W. Bokde; Andreas Heinz; Bernd Ittermann; Mark Lathrop; Claire Lawrence; Eva Loth; Anbarasu Lourdusamy; Karl Mann; Jean-Luc Martinot; Frauke Nees; Miklós Palkovits; Tomáš Paus

The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca2+-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2−/− mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2−/− mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the IA potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.


NeuroImage | 2011

Boys do it the right way: sex-dependent amygdala lateralization during face processing in adolescents.

Sophia Schneider; Jan Peters; Uli Bromberg; Stefanie Brassen; Mareike M. Menz; Stephan F. Miedl; Eva Loth; Tobias Banaschewski; Alexis Barbot; Gareth J. Barker; Patricia J. Conrod; Jeffrey W. Dalley; Herta Flor; Jürgen Gallinat; Hugh Garavan; Andreas Heinz; Bernd Itterman; Catherine Mallik; Karl Mann; Eric Artiges; Tomáš Paus; Jean-Baptiste Poline; Marcella Rietschel; Laurence Reed; Michael N. Smolka; Rainer Spanagel; C. Speiser; Andreas Ströhle; Maren Struve; Gunter Schumann

Previous studies have observed a sex-dependent lateralization of amygdala activation related to emotional memory. Specifically, it was shown that the activity of the right amygdala correlates significantly stronger with memory for images judged as arousing in men than in women, and that there is a significantly stronger relationship in women than in men between activity of the left amygdala and memory for arousing images. Using a large sample of 235 male adolescents and 235 females matched for age and handedness, we investigated the sex-specific lateralization of amygdala activation during an emotional face perception fMRI task. Performing a formal sex by hemisphere analysis, we observed in males a significantly stronger right amygdala activation as compared to females. Our results indicate that adolescents display a sex-dependent lateralization of amygdala activation that is also present in basic processes of emotional perception. This finding suggests a sex-dependent development of human emotion processing and may further implicate possible etiological pathways for mental disorders most frequent in adolescent males (i.e., conduct disorder).


Proceedings of the National Academy of Sciences of the United States of America | 2013

Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder

Christine Ecker; Lisa Ronan; Yue Feng; Eileen Daly; Clodagh Murphy; Cedric E. Ginestet; Michael Brammer; P. C. Fletcher; Edward T. Bullmore; John Suckling; Simon Baron-Cohen; Steven Williams; Eva Loth; Declan Murphy

Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter. Such intrinsic gray-matter connections are inherently more difficult to describe in vivo but may be inferred from a variety of surface-based geometric features that can be measured using magnetic resonance imaging. Here, we present a neuroimaging study that examines the intrinsic cortico-cortical connectivity of the brain in ASD using measures of “cortical separation distances” to assess the global and local intrinsic “wiring costs” of the cortex (i.e., estimated length of horizontal connections required to wire the cortex within the cortical sheet). In a sample of 68 adults with ASD and matched controls, we observed significantly reduced intrinsic wiring costs of cortex in ASD, both globally and locally. Differences in global and local wiring cost were predominantly observed in fronto-temporal regions and also significantly predicted the severity of social and repetitive symptoms (respectively). Our study confirms that atypical cortico-cortical “connectivity” in ASD is not restricted to the development of white-matter connections but may also affect the intrinsic gray-matter architecture (and connectivity) within the cortical sheet. Thus, the atypical connectivity of the brain in ASD is complex, affecting both gray and white matter, and forms part of the core neural substrates underlying autistic symptoms.


Human Brain Mapping | 2012

Creating probabilistic maps of the face network in the adolescent brain: A multicentre functional MRI study

Amir M. Tahmasebi; Eric Artiges; Tobias Banaschewski; Gareth J. Barker; Ruediger Bruehl; Christian Büchel; Patricia J. Conrod; Herta Flor; Hugh Garavan; Jürgen Gallinat; Andreas Heinz; Bernd Ittermann; Eva Loth; Klára Marečková; Jean-Luc Martinot; Jean-Baptiste Poline; Marcella Rietschel; Michael N. Smolka; Andreas Ströhle; Gunter Schumann; Tomáš Paus

Large‐scale magnetic resonance (MR) studies of the human brain offer unique opportunities for identifying genetic and environmental factors shaping the human brain. Here, we describe a dataset collected in the context of a multi‐centre study of the adolescent brain, namely the IMAGEN Study. We focus on one of the functional paradigms included in the project to probe the brain network underlying processing of ambiguous and angry faces. Using functional MR (fMRI) data collected in 1,110 adolescents, we constructed probabilistic maps of the neural network engaged consistently while viewing the ambiguous or angry faces; 21 brain regions responding to faces with high probability were identified. We were also able to address several methodological issues, including the minimal sample size yielding a stable location of a test region, namely the fusiform face area (FFA), as well as the effect of acquisition site (eight sites) and scanner (four manufacturers) on the location and magnitude of the fMRI response to faces in the FFA. Finally, we provided a comparison between male and female adolescents in terms of the effect sizes of sex differences in brain response to the ambiguous and angry faces in the 21 regions of interest. Overall, we found a stronger neural response to the ambiguous faces in several cortical regions, including the fusiform face area, in female (vs. male) adolescents, and a slightly stronger response to the angry faces in the amygdala of male (vs. female) adolescents. Hum Brain Mapp, 2012.

Collaboration


Dive into the Eva Loth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Mann

Heidelberg University

View shared research outputs
Researchain Logo
Decentralizing Knowledge