Eva M. Fast
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva M. Fast.
Science | 2011
Eva M. Fast; Michelle E. Toomey; Kanchana Panaram; Danielle Desjardins; Eric D. Kolaczyk; Horacio M. Frydman
A bacterial endosymbiont up-regulates mitosis of Drosophila germline stem cells and blocks programmed cell death. Wolbachia are widespread maternally transmitted intracellular bacteria that infect most insect species and are able to alter the reproduction of innumerous hosts. The cellular bases of these alterations remain largely unknown. Here, we report that Drosophila mauritiana infected with a native Wolbachia wMau strain produces about four times more eggs than the noninfected counterpart. Wolbachia infection leads to an increase in the mitotic activity of germline stem cells (GSCs), as well as a decrease in programmed cell death in the germarium. Our results suggest that up-regulation of GSC division is mediated by a tropism of Wolbachia for the GSC niche, the cellular microenvironment that supports GSCs.
The Journal of Neuroscience | 2009
Hui Fu; Jun Cai; Hans Clevers; Eva M. Fast; Susan Gray; Rachel Greenberg; Mukesh K. Jain; Qiufu Ma; Mengsheng Qiu; David H. Rowitch; Christopher Taylor; Charles D. Stiles
Forward genetic screens in genetically accessible invertebrate organisms such as Drosophila melanogaster have shed light on transcription factors that specify formation of neurons in the vertebrate CNS. However, invertebrate models have, to date, been uninformative with respect to genes that specify formation of the vertebrate glial lineages. All recent insights into specification of vertebrate glia have come via monitoring the spatial and temporal expression patterns of individual transcription factors during development. In studies described here, we have taken this approach to the genome scale with an in silico screen of the Mahoney pictorial atlas of transcription factor expression in the developing CNS. From the population of 1445 known or probable transcription factors encoded in the mouse genome, we identify 12 novel transcription factors that are expressed in glial lineage progenitor cells. Entry-level screens for biological function establish one of these transcription factors, Klf15, as sufficient for genesis of precocious GFAP-positive astrocytes in spinal cord explants. Another transcription factor, Tcf4, plays an important role in maturation of oligodendrocyte progenitors.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Michelle E. Toomey; Kanchana Panaram; Eva M. Fast; Catherine Beatty; Horacio M. Frydman
Wolbachia are intracellular bacteria that infect invertebrates at pandemic levels, including insect vectors of devastating infectious diseases. Although Wolbachia are providing novel strategies for the control of several human pathogens, the processes underlying Wolbachia’s successful propagation within and across species remain elusive. Wolbachia are mainly vertically transmitted; however, there is also evidence of extensive horizontal transmission. Here, we provide several lines of evidence supporting Wolbachia’s targeting of ovarian stem cell niches—referred to as “niche tropism”—as a previously overlooked strategy for Wolbachia thriving in nature. Niche tropism is pervasive in Wolbachia infecting the Drosophila genus, and different patterns of niche tropism are evolutionarily conserved. Phylogenetic analysis, confirmed by hybrid introgression and transinfection experiments, demonstrates that bacterial factors are the major determinants of differential patterns of niche tropism. Furthermore, bacterial load is increased in germ-line cells passing through infected niches, supporting previous suggestions of a contribution of Wolbachia from stem-cell niches toward vertical transmission. These results support the role of stem-cell niches as a key component for the spreading of Wolbachia in the Drosophila genus and provide mechanistic insights into this unique tissue tropism.
Experimental Cell Research | 2014
Elliott J. Hagedorn; Ellen M. Durand; Eva M. Fast; Leonard I. Zon
Throughout the lifetime of an individual, hematopoietic stem cells (HSCs) self-renew and differentiate into lineages that include erythrocytes, platelets and all immune cells. HSC transplantation offers a potentially curative treatment for a number of hematopoietic and non-hematopoietic malignancies as well as immune and genetic disorders. Limited availability of immune-matched donors reduces the viable options for many patients in need of HSC transplantation, particularly those of diverse racial and ethnic backgrounds. Due to rapid availability and less stringent immune-matching requirements, umbilical cord blood (UCB) has emerged as a valuable source of transplantable HSCs. A single UCB unit contains a suboptimal number of HSCs for treating larger children or adults and there has thus been great clinical interest in expanding UCB HSCs ex vivo for use in transplantation. In this review we discuss the latest research and future avenues for the therapeutic use of small lipid mediator dmPGE2 to expand HSC numbers for transplantation. Originally identified in a chemical screen in zebrafish, dmPGE2 has now advanced to a phase II clinical trial as a therapy for patients with leukemia and lymphoma who are undergoing UCB transplantation.
Neuro-oncology | 2011
David S. Ziegler; Joanna Keating; Santosh Kesari; Eva M. Fast; Leigh Zawel; Naren Ramakrishna; Jessica W. Barnes; Mark W. Kieran; Sophie E. M. Veldhuijzen van Zanten; Andrew L. Kung
We tested the use of the small-molecule Inhibitor of Apoptosis Protein (IAP) inhibitor LBW242 in combination with the standard-of-care therapies of irradiation and temozolomide for malignant gliomas. In vitro assays demonstrated that LBW242 enhanced the cytotoxic activity of radiotherapy, and clonogenic assays showed that the combination therapy led to a synergistic anti-glioma effect in multiple cell lines. Neurosphere assays revealed that the combination of radiation and LBW242 led to a pro-apoptotic effect in these glioma-initiating cell-enriched assays, with a corresponding inhibition of primary tumor cell growth. Athymic mice bearing established human malignant glioma tumor xenografts treated with LBW242 plus radiation and temozolomide demonstrated a synergistic suppression of tumor growth. Taken together, these experiments show that the pro-apoptotic and anti-glioma effects of radiotherapy and chemotherapy can be enhanced by the addition of a small-molecule IAP inhibitor. These results are readily translatable to clinical trial and offer the potential for improved treatment outcomes for patients with glioma.
mSphere | 2017
Rama K. Simhadri; Eva M. Fast; Rong Guo; Michaela J. Schultz; Natalie Vaisman; Luis Ortiz; Joanna Bybee; Barton E. Slatko; Horacio M. Frydman
Wolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects and parasitic nematodes. They can block mosquitos’ ability to transmit several infectious disease-causing pathogens, including Zika, dengue, chikungunya, and West Nile viruses and malaria parasites. Certain extracellular bacteria present in the gut lumen of these insects can also block pathogen transmission. However, our understanding of interactions between Wolbachia and gut bacteria and how they influence each other is limited. Here we show that the presence of Wolbachia strain wMel changes the composition of gut commensal bacteria in the fruit fly. Our findings implicate interactions between bacterial species as a key factor in determining the overall composition of the microbiome and thus reveal new paradigms to consider in the development of disease control strategies. ABSTRACT Endosymbiotic Wolbachia bacteria and the gut microbiome have independently been shown to affect several aspects of insect biology, including reproduction, development, life span, stem cell activity, and resistance to human pathogens, in insect vectors. This work shows that Wolbachia bacteria, which reside mainly in the fly germline, affect the microbial species present in the fly gut in a lab-reared strain. Drosophila melanogaster hosts two main genera of commensal bacteria—Acetobacter and Lactobacillus. Wolbachia-infected flies have significantly reduced titers of Acetobacter. Sampling of the microbiome of axenic flies fed with equal proportions of both bacteria shows that the presence of Wolbachia bacteria is a significant determinant of the composition of the microbiome throughout fly development. However, this effect is host genotype dependent. To investigate the mechanism of microbiome modulation, the effect of Wolbachia bacteria on Imd and reactive oxygen species pathways, the main regulators of immune response in the fly gut, was measured. The presence of Wolbachia bacteria does not induce significant changes in the expression of the genes for the effector molecules in either pathway. Furthermore, microbiome modulation is not due to direct interaction between Wolbachia bacteria and gut microbes. Confocal analysis shows that Wolbachia bacteria are absent from the gut lumen. These results indicate that the mechanistic basis of the modulation of composition of the microbiome by Wolbachia bacteria is more complex than a direct bacterial interaction or the effect of Wolbachia bacteria on fly immunity. The findings reported here highlight the importance of considering the composition of the gut microbiome and host genetic background during Wolbachia-induced phenotypic studies and when formulating microbe-based disease vector control strategies. IMPORTANCE Wolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects and parasitic nematodes. They can block mosquitos’ ability to transmit several infectious disease-causing pathogens, including Zika, dengue, chikungunya, and West Nile viruses and malaria parasites. Certain extracellular bacteria present in the gut lumen of these insects can also block pathogen transmission. However, our understanding of interactions between Wolbachia and gut bacteria and how they influence each other is limited. Here we show that the presence of Wolbachia strain wMel changes the composition of gut commensal bacteria in the fruit fly. Our findings implicate interactions between bacterial species as a key factor in determining the overall composition of the microbiome and thus reveal new paradigms to consider in the development of disease control strategies.
Stem cell reports | 2017
Avik Choudhuri; Eva M. Fast; Leonard I. Zon
This perspective describes the usefulness of zebrafish as a model to study interaction of hematopoietic stem cells with the associated niche in vivo, explains how such interactions influence regeneration, migration, and clonality of HSCs, and defines their fate during differentiation.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Jamie L. Lahvic; Michelle B. Ammerman; Pulin Li; Megan C. Blair; Emma R. Stillman; Eva M. Fast; Anne L. Robertson; Constantina Christodoulou; Julie R. Perlin; Song Yang; Nan Chiang; Paul C. Norris; Madeleine L. Daily; Shelby E. Redfield; Iris T. Chan; Mona Chatrizeh; Michael E. Chase; Olivia Weis; Yi Zhou; Charles N. Serhan; Leonard I. Zon
Significance Small-molecule enhancers of hematopoietic stem cell transplant could improve the safety of this treatment and expand the pool of eligible patients. We previously showed that the lipid 11,12-epoxyeicosatrienoic acid (EET) enhanced transplant in zebrafish and mice. We use a bioinformatic approach to identify candidate EET receptors and demonstrate that EET activates GPR132. We find that this receptor is important in zebrafish and mouse hematopoiesis, and we further show that GPR132 has responsiveness to additional oxygenated polyunsaturated fatty acids such as EET. Thus, GPR132 receives lipid-derived signals to regulate hematopoiesis and is a therapeutic target for enhancing HSC transplant. Epoxyeicosatrienoic acids (EETs) are lipid-derived signaling molecules with cardioprotective and vasodilatory actions. We recently showed that 11,12-EET enhances hematopoietic induction and engraftment in mice and zebrafish. EETs are known to signal via G protein-coupled receptors, with evidence supporting the existence of a specific high-affinity receptor. Identification of a hematopoietic-specific EET receptor would enable genetic interrogation of EET signaling pathways, and perhaps clinical use of this molecule. We developed a bioinformatic approach to identify an EET receptor based on the expression of G protein-coupled receptors in cell lines with differential responses to EETs. We found 10 candidate EET receptors that are expressed in three EET-responsive cell lines, but not expressed in an EET-unresponsive line. Of these, only recombinant GPR132 showed EET-responsiveness in vitro, using a luminescence-based β-arrestin recruitment assay. Knockdown of zebrafish gpr132b prevented EET-induced hematopoiesis, and marrow from GPR132 knockout mice showed decreased long-term engraftment capability. In contrast to high-affinity EET receptors, GPR132 is reported to respond to additional hydroxy-fatty acids in vitro, and we found that these same hydroxy-fatty acids enhance hematopoiesis in the zebrafish. We conducted structure–activity relationship analyses using both cell culture and zebrafish assays on diverse medium-chain fatty acids. Certain oxygenated, unsaturated free fatty acids showed high activation of GPR132, whereas unoxygenated or saturated fatty acids had lower activity. Absence of the carbon-1 position carboxylic acid prevented activity, suggesting that this moiety is required for receptor activation. GPR132 responds to a select panel of oxygenated polyunsaturated fatty acids to enhance both embryonic and adult hematopoiesis.
Developmental Cell | 2016
Eva M. Fast; Leonard I. Zon
A major hallmark of aging is a decline in tissue regeneration. In a recent issue of Cell, Bernitz and colleagues (2016) determine the divisional history of hematopoietic stem cells (HSCs) to be a key player of regenerative potential in the aging mouse.
Nature Biotechnology | 2015
Eva M. Fast; Len I Zon
Analysis of gene expression in thousands of single cells generates a model of the blood regulatory network.