Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva M. Muñoz is active.

Publication


Featured researches published by Eva M. Muñoz.


Journal of Biological Chemistry | 2006

The Na+:Cl– Cotransporter Is Activated and Phosphorylated at the Amino-terminal Domain upon Intracellular Chloride Depletion

Diana Pacheco-Alvarez; Pedro San Cristobal; Patricia Meade; Erika Moreno; Norma Vázquez; Eva M. Muñoz; Abigail Díaz; María Eugenia Juárez; Ignacio Gimenez; Gerardo Gamba

The renal Na+:Cl– cotransporter rNCC is mutated in human disease, is the therapeutic target of thiazide-type diuretics, and is clearly involved in arterial blood pressure regulation. rNCC belongs to an electroneutral cation-coupled chloride cotransporter family (SLC12A) that has two major branches with inverse physiological functions and regulation: sodium-driven cotransporters (NCC and NKCC1/2) that mediate cellular Cl– influx are activated by phosphorylation, whereas potassium-driven cotransporters (KCCs) that mediate cellular Cl– efflux are activated by dephosphorylation. A cluster of three threonine residues at the amino-terminal domain has been implicated in the regulation of NKCC1/2 by intracellular chloride, cell volume, vasopressin, and WNK/STE-20 kinases. Nothing is known, however, about rNCC regulatory mechanisms. By using rNCC heterologous expression in Xenopus laevis oocytes, here we show that two independent intracellular chloride-depleting strategies increased rNCC activity by 3-fold. The effect of both strategies was synergistic and dose-dependent. Confocal microscopy of enhanced green fluorescent protein-tagged rNCC showed no changes in rNCC cell surface expression, whereas immunoblot analysis, using the R5-anti-NKCC1-phosphoantibody, revealed increased phosphorylation of rNCC amino-terminal domain threonine residues Thr53 and Thr58. Elimination of these threonines together with serine residue Ser71 completely prevented rNCC response to intracellular chloride depletion. We conclude that rNCC is activated by a mechanism that involves amino-terminal domain phosphorylation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Heparin-Binding Domains in Vascular Biology

Eva M. Muñoz; Robert J. Linhardt

Heparin is a major anticoagulant with activity mediated primarily through its interaction with antithrombin (AT). Heparan sulfate (HS), structurally related to heparin, binds a wide range of proteins of different functionality, taking part in various physiological and pathological processes. The heparin–AT complex, the most well understood facet of anticoagulation, serves as a prototypical example of the important role of heparin/HS in vascular biology. Extensive studies have identified common structural features in heparin/HS–binding sites of proteins. These include the elucidation of consensus sequences in proteins, patterns of clusters of basic and nonbasic residues, and common spatial arrangements of basic amino acids in the heparin-binding sites. Although these studies have provided valuable information, heparin/HS–binding proteins differ widely in structure. The prediction of heparin/HS–binding proteins from sequence information is not currently possible, and elucidation of protein-binding sites requires the individual study of each glycosaminoglycan–protein complex. Thus, x-ray crystallography and site-directed mutagenesis experiments are among the most powerful tools, providing accurate structural information, facilitating the characterization of heparin–protein complexes.


Journal of Biological Chemistry | 2005

Enzymatic redesigning of biologically active heparan sulfate

Jinghua Chen; Fikri Y. Avci; Eva M. Muñoz; Lynda M. McDowell; Miao Chen; Lars C. Pedersen; Lijuan Zhang; Robert J. Linhardt; Jian Liu

Heparan sulfate carries a wide range of biological activities, regulating blood coagulation, cell differentiation, and inflammatory responses. The sulfation patterns of the polysaccharide are essential for the biological activities. In this study, we report an enzymatic method for the sulfation of multimilligram amounts of heparan sulfate with specific functions using immobilized sulfotransferases combined with a 3′-phosphoadenosine 5′-phosphosulfate regeneration system. By selecting appropriate enzymatic modification steps, an inactive precursor has been converted to the heparan sulfate having three distinct biological activities, associated with binding to antithrombin, fibroblast growth factor-2, and herpes simplex virus envelope glycoprotein D. Because the recombinant sulfotransferases are expressed in bacteria, and the method uses a low cost sulfo donor, it can be readily utilized to synthesize large quantities of anticoagulant heparin drug or other biologically active heparan sulfates.


Glycoconjugate Journal | 2006

Isolation and characterization of heparan sulfate from various murine tissues

Mohamad Warda; Toshihiko Toida; Fuming Zhang; Peilong Sun; Eva M. Muñoz; Jin Xie; Robert J. Linhardt

Heparan sulfate (HS), is a proteoglycan (PG) found both in the extracellular matrix and on cell surface. It may represent one of the most biologically important glycoconjugates, playing an essential role in a variety of different events at molecular level. The publication of the mouse genome, and the intensive investigations aimed at understanding the proteome it encodes, has motivated us to initiate studies in mouse glycomics focused on HS. The current study is aimed at determining the quantitative and qualitative organ distribution of HS in mice. HS from brain, eyes, heart, lung, liver, kidney, spleen, intestine and skin was purified from 6–8 week old male and female mice. The recovered yield of HS from these organs is compared with the recovered whole body yield of HS. Structural characterization of the resulting HS relied on disaccharide analysis and 1H-NMR spectroscopy. Different organs revealed a characteristic HS structure. These data begin to provide a structural understanding of the role of HS in cell-cell interactions, cell signaling and sub-cellular protein trafficking as well as a fundamental understanding of certain aspects of protein-carbohydrate interactions.


Journal of Biological Chemistry | 2011

Nonsteroidal Anti-inflammatory Drugs Inhibit Vascular Smooth Muscle Cell Proliferation by Enabling the Ca2+-dependent Inactivation of Calcium Release-activated Calcium/Orai Channels Normally Prevented by Mitochondria

Eva M. Muñoz; Ruth A. Valero; Ariel Quintana; Markus Hoth; Lucía Núñez; Carlos Villalobos

Abnormal vascular smooth muscle cell (VSMC) proliferation contributes to occlusive and proliferative disorders of the vessel wall. Salicylate and other nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit VSMC proliferation by an unknown mechanism unrelated to anti-inflammatory activity. In search for this mechanism, we have studied the effects of salicylate and other NSAIDs on subcellular Ca2+ homeostasis and Ca2+-dependent cell proliferation in rat aortic A10 cells, a model of neointimal VSMCs. We found that A10 cells displayed both store-operated Ca2+ entry (SOCE) and voltage-operated Ca2+ entry (VOCE), the former being more important quantitatively than the latter. Inhibition of SOCE by specific Ca2+ released-activated Ca2+ (CRAC/Orai) channels antagonists prevented A10 cell proliferation. Salicylate and other NSAIDs, including ibuprofen, indomethacin, and sulindac, inhibited SOCE and thereby Ca2+-dependent, A10 cell proliferation. SOCE, but not VOCE, induced mitochondrial Ca2+ uptake in A10 cells, and mitochondrial depolarization prevented SOCE, thus suggesting that mitochondrial Ca2+ uptake controls SOCE (but not VOCE) in A10 cells. NSAIDs depolarized mitochondria and prevented mitochondrial Ca2+ uptake, suggesting that they favor the Ca2+-dependent inactivation of CRAC/Orai channels. NSAIDs also inhibited SOCE in rat basophilic leukemia cells where mitochondrial control of CRAC/Orai is well established. NSAIDs accelerate slow inactivation of CRAC currents in rat basophilic leukemia cells under weak Ca2+ buffering conditions but not in strong Ca2+ buffer, thus excluding that NSAIDs inhibit SOCE directly. Taken together, our results indicate that NSAIDs inhibit VSMC proliferation by facilitating the Ca2+-dependent inactivation of CRAC/Orai channels which normally is prevented by mitochondria clearing of entering Ca2+.


Oncotarget | 2017

Mitochondria sustain store-operated currents in colon cancer cells but not in normal colonic cells: reversal by non-steroidal anti-inflammatory drugs

Miriam Hernández-Morales; Diego Sobradillo; Ruth A. Valero; Eva M. Muñoz; Daniel Ubierna; Mary Pat Moyer; Lucía Núñez; Carlos Villalobos

Tumor cells undergo a critical remodeling of intracellular Ca2+ homeostasis that contribute to important cancer hallmarks. Store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway modulated by mitochondria, is dramatically enhanced in colon cancer cells. In addition, most cancer cells display the Warburg effect, a metabolic switch from mitochondrial metabolism to glycolysis that provides survival advantages. Accordingly, we investigated mitochondria control of store-operated currents (SOCs) in two cell lines previously selected for representing human normal colonic cells and colon cancer cells. We found that, in normal cells, mitochondria are important for SOCs activity but they are unable to prevent current inactivation. In contrast, in colon cancer cells, mitochondria are dispensable for SOCs activation but are able to prevent the slow, Ca2+-dependent inactivation of SOCs. This effect is associated to increased ability of tumor cell mitochondria to take up Ca2+ due to increased mitochondrial potential (ΔΨ) linked to the Warburg effect. Consistently with this view, selected non-steroidal anti-inflammatory drugs (NSAIDs) depolarize mitochondria, inhibit mitochondrial Ca2+ uptake and promote SOC inactivation, leading to inhibition of both SOCE and cancer cell proliferation. Thus, mitochondria sustain store-operated currents in colon cancer cells but not in normal colonic cells and this effect is counteracted by selected NSAIDs providing a mechanism for cancer chemoprevention.Tumor cells undergo a critical remodeling of intracellular Ca2+ homeostasis that contribute to important cancer hallmarks. Store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway modulated by mitochondria, is dramatically enhanced in colon cancer cells. In addition, most cancer cells display the Warburg effect, a metabolic switch from mitochondrial metabolism to glycolysis that provides survival advantages. Accordingly, we investigated mitochondria control of store-operated currents (SOCs) in two cell lines previously selected for representing human normal colonic cells and colon cancer cells. We found that, in normal cells, mitochondria are important for SOCs activity but they are unable to prevent current inactivation. In contrast, in colon cancer cells, mitochondria are dispensable for SOCs activation but are able to prevent the slow, Ca2+-dependent inactivation of SOCs. This effect is associated to increased ability of tumor cell mitochondria to take up Ca2+ due to increased mitochondrial potential (ΔΨ) linked to the Warburg effect. Consistently with this view, selected non-steroidal anti-inflammatory drugs (NSAIDs) depolarize mitochondria, inhibit mitochondrial Ca2+ uptake and promote SOC inactivation, leading to inhibition of both SOCE and cancer cell proliferation. Thus, mitochondria sustain store-operated currents in colon cancer cells but not in normal colonic cells and this effect is counteracted by selected NSAIDs providing a mechanism for cancer chemoprevention.


Chemistry and Biology of Heparin and Heparan Sulfate | 2005

Heparin Regulation of the Complement System

Haining Yu; Eva M. Muñoz; R. Erik Edens; Robert J. Linhardt

Publisher Summary Heparin (HP) can bind to a variety of proteins, including growth factors, pro-inflammatory chemokines and cytokines, extracellular matrix proteins, and complement proteins. HP has a variety of biological activities, many of which are of interest because of their potential therapeutic utility. By regulating the activity of HP-binding proteins, HP and the related glycosaminoglycan (GAG), heparan sulfate (HS), can influence various biological processes giving HP therapeutic applications as an antithrombotic, antiatherosclerotic, anticomplement, antiinfective, anticancer, and anti-inflammatory agent. Monosaccharide and disaccharides with structural similarities to dextran did not cause a detectable decrease in C3b-factor H binding, while sugar polymers caused large decreases in the affinity between C3b and factor H as a result of the polysaccharide occupying the binding site in C3b or in factor H, preventing their interaction. HP and the structurally similar HS regulate multiple steps in the complement system including ones in both the classical and alternative pathways. Quantitative data in the form of association rates, dissociation rates, and affinity constants for complex formation are provided for many of these interactions.


Biochimica et Biophysica Acta | 2005

Kinetic studies on the interactions of heparin and complement proteins using surface plasmon resonance

Haining Yu; Eva M. Muñoz; R. Erik Edens; Robert J. Linhardt


Journal of Biological Chemistry | 2004

Structural analysis of the sulfotransferase (3-o-sulfotransferase isoform 3) involved in the biosynthesis of an entry receptor for herpes simplex virus 1

Andrea F. Moon; Suzanne C. Edavettal; Joe M. Krahn; Eva M. Muñoz; Masahiko Negishi; Robert J. Linhardt; Jian Liu; Lars C. Pedersen


Carbohydrate Research | 2007

Glycosylation in room temperature ionic liquid using unprotected and unactivated donors

Tae-Joon Park; Michel Weiwer; Xuejun Yuan; Sultan Nacak Baytas; Eva M. Muñoz; Saravanababu Murugesan; Robert J. Linhardt

Collaboration


Dive into the Eva M. Muñoz's collaboration.

Top Co-Authors

Avatar

Robert J. Linhardt

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Jian Liu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fuming Zhang

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa M. Kemp

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Villalobos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Cristina Vicent

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge